BA327- Statistics & Numerical Mathematics

CREDIT HOURS 3 Hours

CONTACT HOURS (Hours/week) Lecture: 2; Tutorial: 2

COURSE COORDINATOR

Dr Ahmed Akl

TEXT BOOK:

Mohmoud Gaber, Probability and statistics for engineering student.

COURSE DESCRIPTION:

Probability / Statistics – Probability : Events , Sample Spaces and Probability , conditional Probability , Independent Events , Bay's theorem ; Discrete Probability Distribution; Continuous Probability Distribution ; Special Distributions – Numerical Methods/ Roots of Equations : Bracketing Methods (The Bisection and The False – Position Methods) , Open Methods (Simple Fixed Point Iteration ; The Newton-Raphson Method ; The Secant Method) , Curve Fitting : Interpolation (Newton's Divided-Difference Interpolating polynomials; Lagrange Interpolating Polynomials; Inverse Interpolation).

PREREQUISITE:

BA 323

RELATION OF COURSE TO PROGRAM:

Required

COURSE INSTRUCTION OUTCOMES:

The student gains knowledge on the basic concepts of probability, statistics and different sampling distributions, as well as he/she is introduced to different numerical techniques used in solving mathematical equations and tools for fitting the data by interpolation methods.

TOPICS COVERED:

An introduction to statistics and statistical analysis on data observation – Statistical measurements – Elementary probability, probability theorems – Conditional probability, Independent and dependent events – Total probability rule, bayes theorem and enumeration methods – Discrete probability distribution: probability mass function – Continuous probability distribution: probability density function – Mathematical expectation, mean and variance – Special discrete distribution: Bernoulli , binomial , geometric and Poisson distributions – Special continuous distribution: Uniform, exponential and normal distribution – Discrete and Continuous joint probability distribution – Random Process: temporal and spectral Characteristics.

CONTRIBUTION OF COURSE TO MEET THE REQUIREMENTS OF CRITERION 5:

Professional Component Content				
Math and Basic Sciences	Engineering Topics	General Education	Engineering Design	
\checkmark				

RELATIONSHIP OF COURSE TO STUDENT OUTCOMES:

	Student Outcomes	Course Outcomes
a.	An ability to apply knowledge of mathematics, science, and engineering.	\checkmark
b.	An ability to design and conduct experiments, analyze and interpret data.	
c.	An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.	
d.	An ability to function on multi-disciplinary teams.	
e.	An ability to identify, formulate, and solve engineering problems.	\checkmark
f.	An understanding of professional and ethical responsibility.	
g.	An ability to communicate effectively.	
h.	The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal content	
i.	A recognition of the need for, and an ability to engage in life-long learning.	
j.	A knowledge of contemporary issues within and outside the electrical engineering profession.	
k.	An ability to use the techniques, skills, and modern engineering tools necessary for electrical engineering practice.	