EC321- Signals and Systems

CREDIT HOURS

3 Hours

CONTACT HOURS (Hours/week)

Lecture: 2; Tutorial: 2; Lab: 2

COURSE COORDINATOR

Dr. Ashraf Mamdouh

TEXT BOOK

PHILLIPS, CHARLES, SIGNALS, SYSTEMS, AND TRANSFORMS, 4th Edition, Prentice Hall, 2007

COURSE DESCRIPTION

Introduction to communication theory. Fourier transform as a mathematical tool for spectral analysis. Sampling Theory, Convolution of continuous and discrete signals, Correlation, Concept of power and energy spectral densities and correlation between waveforms. Transmission through linear filters and channels. Hilbert transform and Positive pre-envelope and complex envelope. Response of LPF and BPF to signals.

PREREQUISITE:

BA 226 - EE 231

RELATION OF COURSE TO PROGRAM

Required

COURSE INSTRUCTION OUTCOMES

The student will be able to:

- learn the concept of spectrum (line and continuous) using F.T
- introduce the definition of convolution, and correlation.
- introduce the definition of signal bandwidth, signal power and signal PSD.
- learn the effect of linear system of signals.

TOPICS COVERED

- Introduction and types of signals and systems.
- Introduction to Fourier Transform
- Properties of Fourier Transform
- Time and frequency convolution
- F.T of special functions
- F.T of periodic signals
- Sampling Theory, discrete time signals, 7th week exam
- Convolution of discrete time signals and DFT
- Spectral density and Correlation (Auto, Cross) of power and energy signals

- Hilbert transform / Complex and natural envelope
- System Impulse response and transfer function System Characteristics: Linearity, Time Invariance, Stability, and Causality for continuous and discrete systems.
- Conditions for distortion-less transmission through stable system .
- Impulse response of discrete-time system and discrete convolution discrete correlation-Auto-correlation & Cross-correlation of discrete signals
- Ideal LPF filters in time and frequency domains
- Ideal BPF filters in time and frequency domains

CONTRIBUTION OF COURSE TO MEET THE REQUIREMENTS OF CRITERION 5:

Professional component Content						
Math and Sciences	Basic	Engineering Topics	General Education	Other		
		\checkmark				

RELATIONSHIP OF COURSE TO STUDENT OUTCOMES:

Stu	Course	
		aspects
А	An ability to apply knowledge of mathematics, science, and	$a_1 a_2$
	engineering	
В	An ability to design and conduct experiments, analyze and interpret	$b_1 b_2 b_3 b_4$
	data.	
C	An ability to design a system, component, or process to meet desired	
	needs within realistic constraints such as economics, environmental,	
	social, political, ethical, health, and safety, manufacturability, and	
	sustainability	
D	An ability to function on multi-disciplinary teams.	
E	An ability to identify, formulate, and solve engineering problems	$e_1 e_2 e_3$
F	An understanding of professional and ethical responsibility	
G	An ability to communicate effectively	g ₂ g ₃
Η	The broad education necessary to understand the impact of	
	engineering solutions in a global, economic, environmental, and	
	social content	
Ι	A recognition of the need for, and an ability to engage in life-long	
	learning.	
J	A knowledge of contemporary issues within and outside the	
	electrical engineering profession.	
k	An ability to use the techniques, skills, and modern engineering	k
	tools necessary for electrical engineering practice.	