Hardness of water

Water (H2O)

Soft water

Hard water

Soft water

- Water consists of low concentration of calcium and magnesium salts.
- It gives foam with soap
- Examples:
 - Tap water.
 - Drinking water.

Hard water

- Hard water is due to the presence of high concentration of calcium and magnesium salts that are dissolved in water.
- It doesn't form foam with soap.
- Examples:
 - Sea water.

Hard water

Temporary

Hard water

Permanent Hard water

Temporary Hardness

- Temporary Hardness is due to the presence of Ca²⁺, Mg²⁺ in the form of the bicarbonate ion HCO₃⁻, being present in the water.
- This type of hardness can be treated by boiling the water to expel the CO₂, as indicated by the following equation:
- $Ca^{2+} + 2HCO_3^{-} \rightarrow CaCO_3 + H_2O + CO_2$
- $Mg^{2+} + 2HCO_3^- \rightarrow MgCO_3 + H_2O + CO_2$
- Bicarbonate hardness is classified as temporary hardness

Permanent Hardness

- Permanent hardness is due to the presence of the ions Ca²⁺, Mg⁺² in the form of Cl⁻and SO₄²⁻. This type of hardness cannot be eliminated by boiling.
- The water with this type of hardness is said to be *permanently hard*
- As it can't be treated easily ,so it's treated by chemical treatment such as: ion exchange resin.

Problems of hard water

- Originally, water hardness was defined as the measure of the capacity of the water to precipitate soap
- It forms scales in the boiler that may cause:
 - 1. Decreasing in heat exchange efficiency.
 - 2. Corrosion takes place.
 - 3. Explosion.

Scales due to hard water

Scales due to hard water

Boiler scale on water side

Determination of Total hardness

The ions involved in water hardness, i.e. Ca²⁺(aq) and Mg²⁺(aq), can be determined by titration with a chelating agent ethylenediaminetetraacetic acid (EDTA), usually in the form of disodium salt (H₂Y₂-). The titration reaction is:

During titration:
$$\begin{array}{cccc} H_2Y^{2-}(aq) &+ & Ca^{2+}(aq) \\ H_2Y^{2-}(aq) &+ & Mg^{2+}(aq) \end{array} \xrightarrow{\rightarrow} & CaY^{2-}(aq) &+ & 2 H^+(aq) \\ H_2Y^{2-}(aq) &+ & Mg^{2+}(aq) \end{array} \xrightarrow{\rightarrow} & MgY^{2-}(aq) &+ & 2 H^+(aq) \\ \end{array}$$
At end point
$$\begin{array}{cccc} H_2Y^{2-}(aq) &+ & MgIn^-(aq) \\ Wine-red \end{array} \xrightarrow{\rightarrow} & MgY^{2-}(aq) &+ & HIn^{2-}(aq) \\ Wine-red & & sky-blue \end{array}$$

Determination of Total hardness

Determination of Total hardness

- When both Ca and Mg are both determined, this experiment is called total hardness.
- **Chelating agent:** EDTA which is capable to react with Ca and Mg ions that present in sample solution.
- Hardness solution(I), (II): (NH₄OH+NH₄Cl) and (KOH) used as buffer solution that keeps the pH = 10.
- Sample solution: Tap water.
- Indicators: ManVer which has the ability to select both (Ca, Mg) ions and the calVer has the ability to select Ca ion only.

Determination of total hardness

Procedures:

- Get 10 ml of tap water as a sample solution in a conical flask.
- Add 1 ml of hardness solution (I) to the sample.
- Add 2 drops of indicator (manVer) to the sample solution.
- Fill the burette with standard solution of EDTA (0.01M).
- Titrate EDTA against the sample until the color of the indicator changes from red to blue.
- Repeat these steps 3 times.
- Calculate the average value of the three volumes.

Determination of total hardness

Reading	V ₁ (ml)	V ₂ (ml)	V ₃ (ml)	V _{average} (ml)
Volume	•••••	•••••	•••••	•••••

$$V_{average} = (V_1 + V_2 + V_3) / 3$$

Concentration of $(Ca + Mg) = V_{av} * 100 = \dots mg/I$

Determination of calcium hardness

Procedures:

- Get 10 ml of tap water as a sample solution in a conical flask.
- Add 1 ml of KOH as hardness solution to the sample.
- Add 2 drops of indicator (calVer) to the sample solution.
- Fill the burette with standard solution of EDTA (0.01M).
- Titrate EDTA against the sample until the color of the indicator changes from red to blue.
- Repeat these steps 3 times.
- Calculate the average value of the three volumes.

Determination of calcium hardness

Reading	V ₁ (ml)	V₂ (ml)	V ₃ (ml)	V _{average} (ml)
Volume	•••••	•••••	•••••	

$$V_{average} = (V_1 + V_2 + V_3) / 3$$

Concentration of (Ca) = V_{av} *100 = mg/l

