
Mehrez E. El-Naggar a,⁎, Sarah I. Othman b, Ahmed A. Allam c, Osama M. Morsy d

a Pretreatment and Finishing of Cellulosic Fibers Department, Textile Research Division, National Research Centre, Dokki, Giza, Egypt
b Biology department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, P.O. Box 24428, Saudi Arabia
c Department of Zoology, Faculty of Science, Benti-Suef University, Benti-Suef 65211, Egypt
d Arab Academy for Science, Technology & Maritime Transport, Arab League, Egypt

The authors regret the error in the citation of the figures. Thus, the revised Fig. 1, new references (for figures copy rights) and the legends including the © information are given below. Fig. 1 Different shapes for the lightest aerogel, (a, b) Reprinted with permission from ref. [1], copyright © 2014 American Chemical Society. (c) Reprinted with permission from ref. [2], copyright © 2011 Elsevier. (d) Reprinted with permission from ref. [3], copyright © 2010 Hindawi Publishing Corporation. (e) Reproduced with permission from ref. [4] copyright © 2017 Royal Society of Chemistry. (f) Reproduced with permission from ref. [5] copyright © 2014 Royal Society of Chemistry. (g) Reprinted with permission from ref. [6], copyright © 2014 Elsevier and (h) Reprinted with permission from ref. [7], copyright © 2011 American Chemical Society.

DOI of original article: https://doi.org/10.1016/j.ijbiomac.2019.10.037.

⁎ Corresponding author.
E-mail address: mehrez_chem@yahoo.com (M.E. El-Naggar).
Scheme 1. General pathway of synthesis of bio-aerogels. Adapted from [2].

Fig. 2. Photo image of supercritical CO₂ drying device (Reprinted with permission from ref. [8], copyright © Walter de Gruyter and Company).

Fig. 3. Photo image of freeze-drying device (Reprinted with permission from ref. [9], copyright © 2018 Taylor and Francis).

Fig. 4. SEM of cellulose aerogel, cryogel and xerogel (Reprinted with permission from ref. [10], copyright © 2016 Springer Nature).

Fig. 6. SEM of Chitosan based aerogel prepared from native chitosan dried using (A) air and (B) Sc-CO₂ (Reprinted with permission from ref. [11], copyright © 2019 Elsevier).

Fig. 7. SEM of alginate (left) and alginate/clay (right) (Reprinted with permission from ref. [11], copyright © 2019 Elsevier).

Fig. 8. Image photos of cryogel based PEO and CURD, the concentration of each polymer is written on the front of the bottle (Reprinted with permission from ref. [12], copyright © 2017 Elsevier).

Scheme 2. Graphical steps for the preparation of CURD-based cryogel (Reprinted with permission from ref. [12], copyright © 2017 Elsevier).

Fig. 9. SEM micrographs of PEO/CURD cryogel prepared at different concentrations of PEO and CURD and crosslinked with glyoxal (Reprinted with permission from ref. [12], copyright © 2017 Elsevier).

Fig. 10. Photo images of PEO/CURD cryogels immersed in phosphate buffer saline after 24 h (Reprinted with permission from ref. [12], copyright © 2017 Elsevier).

Fig. 11. Stress-strain profile of (a) PEO/CURD cryogel, (b) PEO/CURD/CNF (0.5%) cryogel (Reprinted with permission from ref. [12], copyright © 2017 Elsevier).

Scheme 3. Schematic illustrates the three types for drug loaded aerogel before gelation or during aging step or during adsorption/precipitation step (Reprinted with permission from ref. [13], copyright © 2014 Elsevier).

These changes in the figure and citations would not affect the conclusion from the figure nor the overall conclusion of the whole article review. The authors would like to apologise for any inconvenience caused.

References


