Application of the HACCP System during the Production of Tomato Paste

Hassan H. Khalaf 1, Ashraf M. Sharoba1, Raoof M. El-Saadany1, Osama M. Morsy2 and Osama M. Gaber 1,2
1 Food Technology Department, Agriculture Faculty, Benha University, Qalubia, Egypt.
2 Harvest Foods Company, Egypt.
3 Arab Academy for Science, Technology & Maritime Transport, Arab League.

Corresponding Author: Omga09@yahoo.com

Abstract

Food Safety is a fundamental public health concern, and achieving a safe supply poses major challenges for organisations involved in the food chain. A wide number of food borne hazards, both familiar and new, pose risks to health and obstructions to international trade in foods. These hazards must be properly analysed, assessed and managed to meet growing and increasingly complex sets of global food chain. Proper implementation of food hygiene principles across the food chain in conjunction with Hazard Analysis and Critical Control Points system will ensure food safety. In this study, microbiological, pesticide residuals and heavy metals qualities of a tomato (Lycopersicon esculentum) paste (36-38%) production line (ripe tomato, washing, sorting, crushing, refining, concentrating, sterilization and aseptic filling) and its preservation in UCI company was studied using the HACCP method. Samples generated during the steps described previously were analyzed by determining microbiological characteristics. Samples were analyzed for total aerobic bacterial count, coliform count and yeast & mould count . The microorganisms involved in spoilage of products were E. Coli, Bacillus, Staphylococcus, Salmonella and Clostridium bacteria. Results of the critical control points (CCPs) of tomato paste processing line. The analysis of selected microbiological parameters during production tomato paste that was done gradually until get the finally product within agreement for the Egyptian Standards. The preserved tomato paste exhibited a pesticide residue was lower than those presented in the Egyptian and the EU Standards. On the other hand, Results of heavy metals was not detected for finally proucted.

Key words: Hazard analysis, HACCP, tomato paste, Microbiological qualities, Heavy metals, Pesticide residues, critical control points, CCPs.

Introduction

HACCP is defined as a system that identifies, evaluates and controls of hazards which are significant for food safety. HACCP was first designed by the Pillsbury Company, together with NASA and the US Army Laboratories at Natick (Motarjemi, 2013). They developed the HACCP system to ensure the safety of food for astronauts. For many years after its adoption by NASA, the system was accepted by international organizations such as the World Health Organization and was applied on a voluntary basis in certain food industries (Motarjemi et al., 1996).

In 1993, the Codex Alimentarius Commission embraced the HACCP system as a powerful tool to improve food safety and established the Codex guidelines for the Application of the HACCP system. This had major implications on the widespread implementation of the HACCP system. In 1995, with the establishment of the World Trade Organization (WTO) and the coming into force of the Agreement on Sanitary and Phytosanitary Measures, the work of Codex guidelines and recommendations became the international reference for national requirements in food safety. This suggested that WTO member states needed to take the work of the Codex Alimentarius into consideration and align their national legislation with the provisions of the Codex Alimentarius Commission. This meant that automatically, the application of the HACCP system became an international requirement for food safety assurance. Currently, the principles of HACCP are found in the national legislation of many countries, (ISO, 2005).

Food quality assurance systems of one sort or another are necessary at every segment of the food chain and in every sector of the food industry to ensure the quality and safety of food. On the one hand governments have the responsibility of establishing the standards, legislation and enforcement programs necessary to control food quality and safety. On the other hand, industry has the responsibility on implementing quality assurance systems, including HACCP, where necessary to ensure compliance with the standards and legislation, Orriss and Whitehead (2000).

Food safety is of paramount importance. The World Health Organization (WHO), recognizing that unsafe food has great health and economic consequences, has from its inception promoted food safety. The conventional approach to ensuring food quality and safety, which depends on inspection and testing of end products, has proved to be inadequate in controlling food-borne disease outbreaks. This may be particularly so in the case of traditional foods, because of their diversity and the great number of personnel involved in their production. A new approach seems to be needed. The HACCP system, which is based on training, developing systems for food hygiene and safety, and monitoring/auditing to confirm proper implementation, has evolved into the system of choice internationally to ensure food safety. The HACCP system identifies, evaluates and controls hazards that
are significant for food safety, is logical, practical and preventive in nature, and may be implemented at all stages of the food production process, (Codex Alimentarius Commission, 2003).

The use of HACCP by food establishments as a methodology to assure the safety of food is increasing worldwide. Although the fundamentals of HACCP have been constant, the application of HACCP continues to be refined to meet the challenges of a dynamic food system. These changes can be seen in the impact on government regulations affecting the industry. Establishments must then work with the government agencies to define how these regulatory actions will impact their operations and refine what they do in order to comply, (García, 2009).

Tomato represents an essential part of human diet, it is a good nutritional resource rich in vitamin C and antioxidant mainly lycopene, carotenoids, organic acids and phenolics (Giovannelli and paradise, 2002).

The cultivated tomato (Lycopersicon esculentum Mill) is a number of the night shade family Solanaceae. The genus Lycopersicon comprises of nine species (Wikipedia, 2013). The tomato is consumed mainly for its contribution to provide provitamin A. This pigment responsible of the red color of tomatoes is mainly present in two forms: Lycopene and Beta carotene these are two powerful antioxidants involved in cellular detoxification process and help in preventing various cancers (Agarwal and Rao, 2000; Gerber, 1999 and Giovannucci, 1999).

The total area of tomato cultivated in Egypt was 208189 faddans yielding an annual production if about 3487345 tons in 2011 (Statistical Agricultural Administration, Ministry of Agriculture, Egypt).

The soluble solids content is important preserving factor. The refraction of tomato is used for determination of maturity and suitability for tomato paste production because it affected spending of tomato at concentration on various concentrated tomato paste. The soluble solids content is one of the most important quality parameters in processing tomato. 50 to 65 % of soluble solids contents are sugars, glucose and fructose and their amount and proportion influences the organoleptic quality of tomatoes (Adedeji et al., 2006). The remaining soluble solids are mainly citric and malic acids, lipids and other components in low concentrations.

The aim of present work was to asses the microbiological, heavy metals and pesticide residues qualities of tomato paste production line using the HACCP system.

Materials And Methods

2.1.Materials:
The fresh raw fruit and vegetable used throughout this study were:

2.1.1. Tomato (Lycopersicon esculentum): Vegetable at ripe stage were obtained from Ismailia Governorate, Egypt.

Technological treatments:
- Tomato paste (36: 38° Brix) cold break extraction at UCI Company:
The tomato paste cold break extraction was manufactured and processed at UCI Company in Badr city, Cairo, Egypt. The cold break processing was applied for preparing the tomato paste 36: 38° Brix.

2.2.Methods:
- 2.2.1.HACCP approach:
The term “HACCP plan” implies the Codex HACCP methodology (Codex Alimentarius Commission, 1999).

- 2.2.2.Application of HACCP system:
Horchner et al., (2006) recommended these steps to apply the HACCP system.

- 2.2.3. Microbiological examination:
Ten grams of each food sample was added to a culture medium/diluent (1:10 and homogenized for 2 min in a Stomacher), in agreement with standard methods for total microbial count (ISO 4833:2013-1 protocol), Yeast & mould count (ISO 21527-2:2008), coliforms (ISO 21528-2:2004), E. coli (ISO, 16649-2:2001) and staphylococci (ISO 6888-1:1999; 2003), Bacillus cereus (ISO 7932:2004), Clostridium count (ISO 7937:2004) and twenty five grams of each food sample was added to a culture medium/diluent (1:10 and homogenized for 2 min in a Stomacher), Salmonella (ISO 6579:2002), Hepatitis A Virus (ISO–TS 15216-2:2013). were isolated and enumerated at each of the five steps of tomato paste production line and product preservation.

- 2.2.4. Determination of Heavy metals:
In tomato paste samples by using, Atomic absorption spectrometry after wet digestion according to A.O.A.C (2016).

- 2.2.5. Pesticide Residues (QuEChERS Method):
Method description: Quick and Easy Method (QuEChERS) for Determination of Pesticide Residues in Foods Using GC-MS according to European Standard Method EN 15662:(2008).

Results and Discussion

3.1. HACCP plan for tomato paste (Brix: 36-38%) processing line:
3.1.1. Assemble the HACCP team (Step 1):
A multidisciplinary group of individuals are established to carry out HACCP studies; the team is comprised of different departments all of the HACCP team members have the training HACCP perquisites, studying and implementation. The HACCP team has technical knowledge of the process covered by the HACCP study, knowledge of hazards associated with malting and experience within the scope of hazard analysis, developing HACCP plans, implementing...
3.1.2. Product description (Steps 2) & Identify intended use (Step 3):

Tomato paste product is a natural product, manufactured with fresh tomatoes, healthy and mature, which are washed, sorted, crushed, refined, concentrated, sterilized and filled in an aseptic bags to ensure safety and conservation. This product does not contain flavorings, preservatives or others. All the equipment and processes involved in the preparation of the product accomplish with strict sanitary conditions and with all current and applicable laws of General Principles of Foods Hygiene “Codex Alimentarius”, Hazard Analysis and Critical Control Points (HACCP) and Good Manufacturing Practices (G.M.P.). Product information.

3.1.3. Construct flow diagram (Steps 4) & On-site verification of flow diagram (Step 5):

The process flow diagram provided is a detailed description of the process to help the HACCP team carry out the hazard analysis. The process flow diagram of tomato paste (36-38%) prepared and assured that, it cover all process steps of product from first step to final product, including re-work routes. The HACCP team has confirmed that the on-site process steps match the diagrams in plant on tomato paste (36-38%) processing line flow diagram Figure (1).

3.1.4. Principle 1: Conduct a hazard analysis (Step 6):

Hazards analysis for tomato paste (36-38%) processing steps was conducted. The potential hazards (physical, chemical and biological) associated with tomato paste (36-38%) production at all steps, and the preventive measures for their control were identified.

 a) Physical hazards:

 The physical hazards associated with fresh tomato fruits were identified and the obtained results were as follow:
  Unripe Fruits: 1.35%
  Unripe Fruits (Yellow): 3.25%
  Unripe Fruits (Green): 0.50%
  Mechanical Damage: 1.80%
  Sunburn: 0.75%
  Pest Damage: 1.50%
  Small Fruits (> 40 mm): 2.10%
  Moldy Fruits: 0.30%
  Insects fragments represent: 0.25%
  Sand%: 0.20%
  Plant parts represent from tomato tree: 0.30%
  Critical Harmful Foreign Bodies (Physical Hazards): Zero

These results are within limits of the fresh tomato fruits specification (internal standard).

b) Chemical Hazards:

Fresh Tomato fruits and Tomato paste (36-38%) was mainly examined for pesticides residual and five heavy metals (Cadmium, Arsenic, Lead, Mercury, and Tin).

1) Pesticide residues:

The pesticides are dangerous and toxic to human health, any pesticide residues remaining in fruits and vegetables can pose hazard to humans and cause confident diseases. It is important to classify and measures the pesticide residues which can be swallowed by fruits and vegetables after treatment with pesticides spray.

Fresh tomato fruits and tomato paste (36-38%) a finished product were analyzed for chlorfenapyr, fludioxonil, cypermethrin, lambda-Cyhalothrin, chlorpyrifos-Methyl and pyridaben pesticide residues are followed during the processing steps of tomato paste. The obtained results are hereafter showing in Table (1) revealed that pesticide residues contents were lower than those presented in the Egyptian Standard (132-1/2015) for the maximum limits of pesticide residues in foods and the EU MRLs (EC) No. (396/2005).
Figure (1): Tomato paste (36-38%) processing line flow diagram
Application of the HACCP System during the Production of Tomato Paste

Figure (1): Continued - Tomato paste (36-38%) processing line flow diagram
Table 1. Pesticide residues in fresh tomato fruits and tomato paste (36-38%).

<table>
<thead>
<tr>
<th>Components</th>
<th>Fresh tomato fruits (mg/kg)</th>
<th>Tomato paste (36-38%) (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. 1</td>
<td>S. 2</td>
</tr>
<tr>
<td>Chlorfenapyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fludioxonil</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>Lambda-Cyhalothrin</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>Chlorypyrinos-Methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyridaben</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Heavy metals:

The obtained results are hereafter showing in Table (2) revealed that heavy metals contents were not detected than those presented in the Egyptian Standard (2360/2007) for the maximum limits of heavy metals in foods.

Table 2. Heavy metals in fresh tomato fruits and tomato paste (36-38%):

<table>
<thead>
<tr>
<th>Components</th>
<th>Unit of Measuring</th>
<th>CCP1</th>
<th>#Tomato paste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>mg/kg</td>
<td>0.02*</td>
<td>N/D</td>
</tr>
<tr>
<td>Lead</td>
<td>mg/kg</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td>Tin</td>
<td>mg/kg</td>
<td>< LOQ</td>
<td>< LOQ</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/kg</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td>Arsenic</td>
<td>mg/kg</td>
<td>N/D</td>
<td>N/D</td>
</tr>
</tbody>
</table>

N/D: Not Detected, < LOQ: Low of quantity
* Each values from 3 samples at 3 different time at zero time, 2 hours and 4 hours of the production shift.
** CCP1: Fresh tomato fruits, # Tomato paste (36-38%): as a finished product.

3) Genetically Modified Organism (GMO):

Fresh tomato fruits & Tomato paste (36-38%) was determined for GMO (P-FMV), GMO (T-NOS), and GMO (35S); the obtained results could be noticed that all results were not detected (ND).

c) Biological Hazards:

Biological Hazards were evaluated by testing samples of raw (fresh) tomato fruits microbiologically for total aerobic bacterial count, mold and yeast, coliform group, E. coli, Staphylococcus aureus, Bacillus cereus, Clostridia sp., and Salmonella sp. as well as through every processing steps along the processing line of tomato paste (36-38%) to identify the biological hazards that might associate with the final Products and the results are shown in Table (3). The obtained results revealed that the fresh tomato fruits was contaminated with pathogenic bacteria (Coliform, E. coli, Staphylococcus aureus, Clostridia sp., Bacillus cereus and Salmonella sp.), but the tomato fruits after washing was still contaminated with pathogenic bacteria without salmonella sp.. The tomato juice after preheating (at 65 °C), refinement and the tomato paste before sterilization were free from pathogenic bacteria.

* Hepatitis A virus:

Fresh tomato fruits & Tomato paste (36-38%) was determined for Hepatitis A virus; the obtained results are shown in Table (3). It could be noticed that the result was not detected (ND).

3.1.5. Principle 2: Determine Critical Control Points (CCPs) (Step 7):

Critical control points (CCPs) in the production processes of tomato paste (36-38%) were identified through the use of a CCP decision tree (NACMCF, 1998). Figure (2) and are shown in Sheet (1).

3.1.6. Principle 3: Establish critical limits for each CCP (Step 8):

The critical limits were the Egyptian Standards, Codex, and EU Standards for raw and packaging materials and final product. Whereas, the critical limits for manufacturing steps were the legal limits which admitted by the HACCP team. The established critical limit for CCP1, CCP2, CCP3, CCP4, and CCP5 were established and shown in Sheet (1).
Application of the HACCP System during the Production of Tomato Paste

Table 3. Microbiological analysis of tomato during the CCPs on tomato paste (36-38%) processing line (on wet weight basis):

<table>
<thead>
<tr>
<th>Components</th>
<th>Reference Methods</th>
<th>CCP1</th>
<th>CCP2</th>
<th>CCP3</th>
<th>CCP4</th>
<th>CCP5</th>
<th>Tomato paste (36-38%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total aerobic bacterial count cfu/g</td>
<td>ISO 4833:2013</td>
<td>6.10×10^7</td>
<td>5.50×10^5</td>
<td>3.80×10^3</td>
<td>----</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Yeast & mould count cfu/g</td>
<td>ISO 21527-2:2008</td>
<td>8.25×10^4</td>
<td>4.50×10^3</td>
<td>5.10×10^2</td>
<td>----</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Coliform count cfu/g</td>
<td>ISO 21528-2:2004</td>
<td>43</td>
<td><10</td>
<td><10</td>
<td>----</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Escherichia coli detection cfu/g</td>
<td>ISO 16649-2:2001</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
<td>----</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Bacillus cereus cfu/g</td>
<td>ISO 7932:2004</td>
<td>23</td>
<td><10</td>
<td><10</td>
<td>----</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Staphylococcus aureus detection cfu/g</td>
<td>ISO 6888-1:1999; 2003</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
<td>----</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Clostridium count cfu/g</td>
<td>ISO 7937:2004</td>
<td>13</td>
<td><10</td>
<td><10</td>
<td>----</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Salmonella detection cfu/ 25 g</td>
<td>ISO 6579:2002</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>----</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Hepatitis A Virus cfu/g</td>
<td>ISO–TS 15216-2:2013</td>
<td>Negative</td>
<td>===========</td>
<td>===========</td>
<td>----</td>
<td>===========</td>
<td>Negative</td>
</tr>
</tbody>
</table>

*Each values from 3 samples at 3 different time at zero time, 2 hours and 4 hours of the production shift.

CCP1: Receiving Fresh tomato fruits, CCP2: Tomato juice after filtration stages, CCP3: Tomato paste during sterilization stage, CCP4: Tomato paste after magnetic trap, CCP5: Tomato paste after aseptic filling stage and Tomato paste (36-38%): as a finished product.

3.1.7. Principle 4: Establish CCP monitoring requirements (Step 9):

Monitoring procedures for each CCP through tomato paste (36-38%) processing line were established as shown in Sheet (1). Monitirng procedures included the following work sheets were developed for monitoring of each CCP processing steps of tomato paste (36-38%).

3.1.8. Principle 5: Establish corrective actions (Step 10):

Corrective actions to be taken when monitoring results show any deviation from the established critical limits at a CCP through tomato paste (36-38%) processing steps were developed and shown in Sheet (1). Corrective action work sheet was developed for recording the non-conformities and the corrective action needed.

3.1.9 Principle 6: Establish verification procedures (Step 11):

Verification procedures were established ro verify that HACCP system is working correctly through tomato paste (36-38%) processing.

HACCP team is responsible for verification of HACCP system and that will achieve through:

- Ensure that the HACCP plan is functioning effectively.
- Review of records, accuracy, and non-compliance and corrective actions taken.
- Equipment and utility checks e.g. temperature
- Audit the supplier for adherence to guarantee.
- Calibration of monitoring sensors and devices.
- Samples inspection to validation with Iron Ped-dles.
- Microbiological finished product testing.
- Chemical finished products testing.

Verification procedures for each CCP were developed and shown in Sheet (1).

In our investigation from Figure (1), which presented flow diagram for manufacture of tomato paste (36-38%) with estimating the CCPs, we determined 5 critical control points, including:

1) Receiving stage raw and packaging material (Fresh Tomato fruits and Aseptic bags).
2) Filtration stage. 3) Sterilization stage. 4) Magnetic trap. 5) Aseptic filling stage.
To monitor system and insure that the HACCP system is working correctly and effectively (able to finding any deviation when occur and control it) and insure that the final product in agreement with The Egyptian Standard (ES) (132-1/2015) and Codex Standard (CXS) (57/1981), finally produced high safety and quality products for consumers.

3.1.10. Principle 7: Documentation and record keeping (Step 12):

Documentation and record keeping of HACCP system for tomato paste (36-38%) was completed previously by:

- Listing of the HACCP team.
- Product information and its intended use.
- Flow diagram for the product.
- The entire process indicating CCPs.
- Hazards and preventive measures for each CCP.
- Critical limits for each CCP.
- Monitoring systems for every process steps and CCPs.
- Corrective actions for deviations from critical limits.
- Procedures for verification of HACCP system.
- Records keeping.

Figure (2): CCP decision tree:
Sheet 1. Tomato Paste (36-38%) Critical Limits, Monitoring, Corrective Actions, Verification & Records sheet:

Critical Limits, Monitoring, Corrective Actions, Verification & Records keeping Sheet

Product Name: Tomato Paste (36-38%)

<table>
<thead>
<tr>
<th>CCP No.</th>
<th>Process Step Type</th>
<th>Significant Hazards</th>
<th>Critical Limit for each Preventive Measure</th>
<th>Monitoring</th>
<th>Corrective Actions</th>
<th>Verification</th>
<th>Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP 1</td>
<td>Ch. Receiving of RM (Tomato fruits)</td>
<td>Pesticide residual and heavy metals</td>
<td>Fruits contaminated with pesticide residual and heavy metals</td>
<td>Take random sample from raw material and sending to Certified Lab.</td>
<td>Stop receiving who supplied fruits contaminated with pesticide residual and heavy metals</td>
<td>Analysis report of any certified Lab.; Supplier audit report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph. Foreign bodies (Sand, Stones, Wood, Plastic piece…)</td>
<td>Not more than 1%</td>
<td>Take random sample from raw material</td>
<td>One sample each month from each supplier</td>
<td>Reject the tomato fruit truck</td>
<td>Receiving tomato fruit report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bi. None</td>
<td></td>
<td>One sample from finished Product; Audit the supplier for adherance to guarantee Check with take random samples after washing and sorting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCP 2</td>
<td>Ch. Receiving of PM (Aseptic Bags)</td>
<td>Contamination with Heavy metals</td>
<td>Food grade bags</td>
<td>Certificates from supplier</td>
<td>Take random sample from incoming shipment</td>
<td>Reject the materials; stop receiving from suppliers who supplied the aseptic bags; or Re- Sterilization with irradiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph. None</td>
<td></td>
<td>Each incoming shipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bi. None</td>
<td>Cross contamination with pathogenic bacteria</td>
<td>Free of pathogens and contamination</td>
<td>Ensure supplier guarantee exists for each incoming shipment; Take random sample from it.</td>
<td>Supply certificate is visually confirmed; and send the sample to certified Lab.</td>
<td>Obtain certificate of conformance from suppliers.</td>
<td>Microbiological Analysis report of any certified Lab.; supplier certificates</td>
</tr>
</tbody>
</table>
Application of the HACCP System during the Production of Tomato Paste

Sheet (1): Continued - Tomato Paste (36-38%) Critical Limits, Monitoring, Corrective Actions, Verification & Records sheet:

<table>
<thead>
<tr>
<th>CCP No.</th>
<th>Process Type</th>
<th>CCP</th>
<th>Process Step</th>
<th>Significant Hazards</th>
<th>Critical Limit for each Preventive Measure</th>
<th>Monitoring</th>
<th>Corrective Actions</th>
<th>Verification</th>
<th>Record Keeping</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Filtration Ch.</td>
<td>Ph.</td>
<td>None</td>
<td>Critical foreign bodies; Foreign material (≥ 3.0 mm)</td>
<td>1- Juice have peel, seeds parts go to not acceptable from traditional 1 3- No critical foreign bodies</td>
<td>Daily - Filter is checked before starting production and every 12 hours and after finishing production</td>
<td>1- Rejected the quantity and refine it second time.</td>
<td>Samples inspection in lab.</td>
<td>- Daily in check list. - Production processes report - Lab. inspection report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bi.</td>
<td>None</td>
<td>Caustic Soda or Sanitizer residue</td>
<td>No traces of caustic soda</td>
<td>For each CIP Washing and rinsing to the sterilizer</td>
<td>QC Engineer & Sterilizer Tech.</td>
<td>Re-washing the sterilizer</td>
<td>Machine cleaning report</td>
</tr>
<tr>
<td>3</td>
<td>Sterilization Stage</td>
<td>Ph.</td>
<td>None</td>
<td>Microbial contamination due to unclean equipment * Improper temperature of the product</td>
<td>Check and record temperature and holding time “Flow rate” from PLC</td>
<td>QC Engineer & Sterilizer Tech.</td>
<td>Auto stop of filling and recycling until the high temperature attained.</td>
<td>Calibration of the heating sensors</td>
<td>Production processes report; and chart of temperature treatment</td>
</tr>
</tbody>
</table>

* = Non microbiological procedures

HACCP (Hazard Analysis and Critical Control Points) system is a proactive approach to food safety that involves identifying, assessing and controlling food safety hazards. It is a systematic and preventive approach to food safety in the production of food products. The HACCP system includes seven principles:

1. Conduct a hazard analysis to determine the points in the production process where food safety hazards occur or are most likely to occur.
2. Identify and assess the critical control points (CCPs) to determine which hazards require control.
3. Establish a set of critical limits for each CCP.
4. Establish monitoring procedures at each CCP to ensure that the process is controlled.
5. Establish corrective actions to be taken when monitoring shows that a CCP is out of control.
6. Establish procedures to verify that the system is working effectively.
7. Establish a system for documentation and record keeping.

In the context of tomato paste production, CCPs are identified at various steps to control specific hazards, such as foreign bodies, microbial contamination, and temperature control. The table above outlines the specific CCPs, the type of hazard, critical limits, monitoring procedures, corrective actions, verification methods, and record keeping procedures for each CCP.
Sheet (1): Continued - Tomato Paste (36-38%) Critical Limits, Monitoring, Corrective Actions, Verification & Records sheet:

<table>
<thead>
<tr>
<th>CCP No.</th>
<th>Process Step Type</th>
<th>Significant Hazards</th>
<th>Critical Limit for each Preventive Measure</th>
<th>Monitoring</th>
<th>Corrective Actions</th>
<th>Verification</th>
<th>Record Keeping</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP 4</td>
<td>Magnet Ch. Trap</td>
<td>Critical foreign bodies, and Foreign materials</td>
<td>Foreign bodies pieces of metal (≤ 0.8 mm)</td>
<td>Ensure that a magnetic trap is working</td>
<td>Check that it switches on and Control is done</td>
<td>QC Engineer</td>
<td>Rejected the quantity and refine it second time - Adjusting the machine by maintenance tech. and production tech.</td>
</tr>
<tr>
<td>CCP 5</td>
<td>Aseptic Ch. Filling</td>
<td>Cross Contamination of filling chamber</td>
<td>Chamber temp. ≥ 94 °C</td>
<td>Ensure that sterilization temperature of chamber have a fault setting</td>
<td>Check to heat treatments and no bad control or leakage in one/many point in sterilization pipe.</td>
<td>Prod. Technician</td>
<td>Auto stop of filling and recycling until the low temperature attained</td>
</tr>
</tbody>
</table>

- Daily in check list
- Periodically calibration results and certificates of Iron Peddles
References

Egyptian Standard (2007). Maximum levels of heavy metal contaminants in food. Egyptian Organization for Standardization and Quality Control, E.S., No. 2360 parts (1:5).

European Committee for Standardization, (2008). Foods of plant origin determination of pesticide residues using GC–MS and/or LC–MS/MS following acetonitrile extraction/partitioning and clean-up by dispersive SPE-QuEChERS-method, EN 15662.

ISO 21527-2 (2008). Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of yeasts and moulds — Part 2: Colony count technique in products with water activity less than or equal.

ISO 6888-1(1999; 2003). Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of coagulase-positive staphylocoecci (Staphylococcus aureus and other species) — Part 1: Technique using Baird-Parker agar medium

ISO 7932 (2004). Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of presumptive Bacillus cereus — Colony-count technique at 30 °C.

Application of the HACCP System during the Production of Tomato Paste