1-7 MEKY M.M., ALY M.H., EL-HALAFAY Y.F.Z., EL-BADAWY E.A.
Temperature dependence of differential gain constant and carrier density at transparency for InGaAsP/InP semiconductor laser diodes

9-15 ALY M.H., OKAZ A.M., EL-GAMMAL M.A., ZAKARIA Y.M.
Excess loss due to thermal buckling in double-coated single-mode optical fibers

17-26 JHAMPATI J.
Development of cybernetical techniques applicable to operation of electrical power systems. Part II

27-35 DI NAPOLI A., SANTINI E.
Refinement of two dimensional meshes for the analysis of non linear magnetic field problems

37-43 BARUA A., SINHA S.
FBQ: a computer aided synthesis program for friend biquad

45-63 IBRAHIM M.M., EL-MAGHRABY M.H.
Microprocessor-controlled dynamic reactive power compensator
TEMPERATURE DEPENDENCE OF DIFFERENTIAL GAIN CONSTANT
AND CARRIER DENSITY AT TRANSPARENCY FOR InGaAsP/InP
SEMICONDUCTOR LASER DIODES

Mohamed M. Meky+
Moustafa H. Aly++
Farag Z. El-Halafawy+++
El-Sayed A. El-Badawy++

+ Faculty of Engineering, University of Alexandria.
++ Faculty of Electronic Engineering, University of Menoufia.
+++ Member of the Optical Society of America (OSA).

One of the most important parameters for the active layer of a laser
diode is the differential gain constant $g_0 (cm^2/sec)$ and the transparency
carrier density $N_T (cm^{-2})$ at which the peak-gain coefficient $g=0$. The
particular composition In$_{0.72}$Ga$_{0.28}$As$_{0.6}$P$_{0.4}$ of undoped active layer
which lattice matches InP, is chosen because its bandgap ($E_g = 0.96$ eV
at $\lambda = 1.3 \mu m$) is at a region of low-loss and minimum dispersion in
optical fibers[1]. Based on the parabolic model of the peak-gain
which relates the peak-gain coefficient, g, of the laser diode to the
injected carrier density N[2], one can calculate the parameters g_0.
and N_T at different temperatures for undoped InGaAsP active layer.

The dependence of the laser diode peak-gain coefficient, g, of an undoped quaternary InGaAsP material with injected carrier density N at 1.3 μm band wavelength can be well approximated by a parabolic model of the form [2]

$$g = aN^2 + bN + \gamma,$$ \hspace{1cm} (1)

where N is the injected carrier density and a, b, and γ are the gain parameters and are functions of temperature, band wavelength and doping of the active layer. The solid curve in Fig.1 shows the superlinear relationship between the gain g and the injected carrier density N neglecting the low gain region. The commonly used linear approximation model is of the form [2]

$$g = A(N - N_T),$$ \hspace{1cm} (2)

where $A (= dg/dN)$ is the gain constant (cm2) and N_T is the transparency value of carrier density illustrated by broken lines in Fig.1.

Neglecting the low gain region, we can fit Eq.(2) with Eq.(1) to get the constants A and N_T in terms of a, b, and γ. We can express the relationship between the differential gain constant g_o and the constant A in the following form

$$g_o = vA,$$ \hspace{1cm} (3)
where \(v \) is the speed of light in the active medium that is defined as

\[
v = \frac{c}{n_r},
\]

(4)

with \(c \) the light speed in vacuum and \(n_r \) the refractive index of the active medium given by \(\text{[2]} \)

\[
n_r = 3.4 + 0.256 y - 0.095 y'^2,
\]

(5)

with \(y (=0.6) \) the As composition in the active layer. The dependence of peak gain coefficient on injected carrier density at different temperatures ranging from \(-10^\circ\text{C}\) to \(50^\circ\text{C}\) is illustrated in Fig. 2 for undoped InGaAsP material at a wavelength \(\lambda = 1.3\mu\text{m} \).

Based on the data given in Ref. [2] and using a curve fitting computer program, we have obtained general forms for the temperature dependence of the three parameters \(\alpha \), \(\beta \) and \(\gamma \) as

\[
\alpha = 4.29467 \times 10^{-29} \exp \left(-0.00329828 T\right),
\]

(6)

\[
\beta = -7.75887 \times 10^{-16} \exp \left(0.002097630 T\right),
\]

(7)

\[
\gamma = 347.373 \exp \left(0.00761227 T\right).
\]

(8)

Using these forms in Eq. (1), one can get the temperature dependence of the peak gain coefficient \(g \). Then using again the curve fitting computer program to approximate the gain \(g \) to a linear dependence on the injected carrier density \(N \), as given in Eq. (2), one can get \(N_T \) the carrier density at transparency and the constant \(A \) as functions
of temperature. The transparency carrier density N_T has been obtained as

\begin{align}
N_T &= 10^{18} \times \left(1.47369 + 0.00212129 T + 8.43604 \times 10^{-6} T^2 \\
&\quad + 5.97474 \times 10^{-8} T^3 + 1.74918 \times 10^{-10} T^4 \right). \tag{9}
\end{align}

From the obtained relation for the constant A, and using Eqs. 3 - 5, we have obtained the differential gain constant, g_ω, as a function of temperature in the form

\begin{align}
g_\omega &= (8.93472 - 0.0651316 T + 6.43553 \times 10^{-5} T^2 \\
&\quad + 1.00126 \times 10^{-7} T^3 + 1.05953 \times 10^{-9} T^4) \times 10^{-6}. \tag{10}
\end{align}

Figures 3(a, b and c) show the variations of parameters α, β and γ with temperature ranging from $-200^\circ C$ up to $150^\circ C$.

Figure 4 displays the variation of both the differential gain constant g_ω and the carrier density of transparency N_T with temperature. The results obtained have a good agreement with the experimental one [3] and show that the differential gain constant, Fig.4, increases with cooling the laser in consistence with that reported in Ref.4.

References

Fig. 1. Variation of peak-gain coefficient with injected carrier density for undoped 1.3 μm band wavelength semiconductor laser diode.

Fig. 2. Variation of peak-gain coefficient with injected carrier density in an undoped InGaAsP quaternary alloy at different temperatures.
Fig. 3-a. Variation of the parameter α with temperature.

Fig. 3-b. Variation of the parameter β with temperature.

The parameter β (cm2 s$^{-1}$ x 10^{-14})
Fig. 3-c. Variation of the parameter γ with temperature.

Fig. 4. Variation of the differential gain constant g_* and the carrier density of transparency N_t with temperature.