Fiber Optics

The effect of a chirped frequency from a laser source is modeled and investigated through a soliton transmission in an inhomogeneous optical fiber with W-tailored refractive index.

Send all correspondence to: Farag Z. El-Halafawy

Contributed papers may be presented in regular sessions, poster sessions, or demonstration sessions. Full information on each type of presentation appears in the calls for papers. Review the material and check the appropriate box.

Check one
This paper is
□ submitted to the 1986 Optical Society of America Annual Meeting.
□ submitted to the 1986 American Physical Society and Optical Society of America International Laser Science Conference.
□ to be sessioned at the discretion of the technical program committee.

Check one
This paper should be:
□ scheduled for poster presentation.
□ scheduled for oral presentation.
□ scheduled for oral presentation only if poster presentation is not possible or desirable.
□ scheduled for poster presentation only if oral presentation is not possible or desirable.
□ scheduled for a demonstration session.

SPONSORSHIP PERMISSION
(For Nonmember Authors)

Contributed papers may be presented at OSA Annual Meeting by OSA members. MEMBER’S NAME: ____________________________ (print)
A nonmember may present papers only with the sponsorship of an OSA member. I have read this abstract and recommend that it be presented. I agree to sponsor the paper. Please note that sponsorship permission is not required for the APS/OSA International Laser Science Conference.

MEMBER’S SIGNATURE: ____________________________
Pulse Distortion in Single-Mode Optical Fibers: Chirped Pulse

Fac. of Electronic Eng., Menoufia Univ., Dept. of Wire Comm Eng.

The theory of pulse distortion in single-mode optical fibers is extended to include laser sources that suffer a linear frequency sweep (chirp) during the duration of the pulse. The chirp is manifested as a variable frequency shift during the pulse. The authors in a previous work (1) have studied the soliton transmission in inhomogeneous optical fibers with \(n \)-tailored refractive index of the form

\[
n(\alpha, m, \omega, r) = n(\omega) \left[1 - \alpha (r/R)^2 + m \alpha (r/R)^4 \right].
\]

\(R \) is the fiber radius while \(\alpha \) and \(m \) are controlling parameters. In this work, a similar procedure is carried out taking into consideration a chirping effect of the form \(\omega = \omega_0 (1 + \phi_m \frac{r}{R}) \). \(T \) is the period of the pulse and \(\phi_m \) is the chirping coefficient which is assumed to take values in the range \(\pm 0.02 \). Calculations concerning group velocity, \(V_g \), and peak power, \(P_0 \), are carried out at both the wavelengths 1.15 and 1.30 \(\mu \text{m} \) for different values of \(\alpha, m, R \) and \(\phi_m \). Keeping \(\alpha, m \) and \(R \) constants, it is found that as \(\phi_m \) increases, \(V_g \) decreases while \(P_0 \) increases. More remarks concerning \(P_0 \) are concluded: i) There exist a threshold value \(\phi_m(\alpha) \) at which the transmission starts (\(P_0 \geq 0 \)). \(\phi_m(\alpha) \) increases sharply with \(R \) but thenafer slows down and finally approach a constant value (\(\approx 0.025 \)) for \(R \gg 20 \mu \text{m} \). ii) Curves depicting \(P_0 \) versus \(\phi_m \) for radii \(\geq 7.5 \mu \text{m} \) intersect at a fixed point (\(\phi_m = -0.003 \)) and (\(P_0 = 0.45 \text{ W} \)). It is concluded that for best transmission, characterized by higher \(V_g \) and lower \(P_0 \), i) the chirping coefficient \(\phi_m \) must assume a minimum value, ii) the controlling parameters \(\alpha \) and \(m \) must be tailored with minimum and maximum values respectively.

(1) El-Halafawy et al., 02 1985, Topical conference on Basic Properties of Optical Materials, National Bureau of Standards (NBS), May 7-9, 1985, MD, USA.