Zero Dispersion in Radially Inhomogeneous Single-Mode
SiO$_2$-GeO$_2$ Optical Fibers

Moustafa H. Aly

Engineering Mathematics & Physics Department,
Faculty of Engineering, University of Alexandria, Alexandria, Egypt.
Member of the Optical Society of America (OSA).

ABSTRACT

The cancellation between material and waveguide dispersions for weakly guiding single-mode fibers has been analyzed to predict the optimum wavelength for zero chromatic (total) dispersion. The fibers under consideration are characterized by a radially inhomogeneous circular core with a polynomial refractive index profile. Zero dispersion wavelength of this type is studied for SiO$_2$-GeO$_2$ glasses and is depicted around 0.7 μm and 0.9 μm for silica and germania glasses, respectively.

I. INTRODUCTION

Single-mode fibers has been established as an excellent medium for long distance telecommunications, providing long repeater spacings and large bandwidths. The length of a repeaterless optical fiber link and the bit rate that can be transmitted over it are limited by two quantities. These are the power attenuation due to losses in the fiber and the pulse dispersion which occurs because of the finite spectral spread of the light source. For efficient communication, it is desirable that the minimum loss wavelength coincides with the wavelength of zero chromatic dispersion or that dispersion is sufficiently low over a large range of wavelengths [1, 2]. Therefore, the study of chromatic dispersion in single-mode fibers is of great importance for ensuring the optimum performance of data transfer rate of long-haul communication systems.

Chromatic dispersion can be derived through the wave equation by numerical methods [2]-[5]. In a recent work [6], we have studied the chromatic dispersion in single-mode fibers with core refractive index of a biquadratic variation with the radial distance.

In this paper, we present a simple analytical study to obtain the chromatic dispersion in single-mode fibers of a radially inhomogeneous circular core with a polynomial profile to the sixth order. The method used to obtain the waveguide dispersion is based on the Kauhal ansatz for the eigen function [7], while the other used to obtain the material dispersion is based on the three-term Sellmeyer dispersion relation [8]. The SiO$_2$-GeO$_2$ glass type is considered because it is currently of great interest. The interest in high germania side is highly increasing because previous calculations have shown that the GeO$_2$ glass exhibits a lower optical loss window than that of high SiO$_2$ containing glasses as a result of reduced Rayleigh scattering at longer wavelengths [8].
II. MATHEMATICAL MODEL

II.1. Propagation Constant

It is well known that $\phi(r)$, the part of the electric field depending on the radial distance r, in an optical fiber, under the weak guidance conditions, satisfies the scalar wave equation [9]:

$$\frac{d^2 \phi(r)}{dr^2} + \frac{1}{r} \frac{d \phi(r)}{dr} + \left(n^2(r) \frac{k^2 - \beta^2}{r^2} - \frac{m^2}{r^2} \right) \phi(r) = 0$$ \hspace{1cm} (1)

where $k (= 2\pi/\lambda)$ is the free space wave number, λ is the operating wavelength, β is the propagation constant, m is the azimuthal mode number $(= 0, 1, 2, 3, \ldots)$ and $n(r)$ is the refractive index as a function of r.

The fiber under consideration is characterized by a core refractive index of a polynomial profile of the form [7]:

$$n^2(r) = n^2_0 \left\{ 1 - f(r) \right\} , \quad r \leq r_o$$ \hspace{1cm} (2-a)

with

$$f(r) = \frac{1}{n^2_0 k^2} \left[a_1 \left(r/r_o \right)^2 - b_1 \left(r/r_o \right)^4 + c_1 \left(r/r_o \right)^6 \right]$$ \hspace{1cm} (2-b)

where n_0 is the axial value of the core refractive index, r_o is the core radius, a_1, b_1, and c_1 are positive constants. This profile is consistent with the experimental work of Rawson et al. [10] and looks like a double clad W-fiber as indicated in the graphs given below, Fig. 1 through Fig. 4.

Solving Eq. (1), Kaushal has obtained the propagation constant, β, in the form [7]:

$$\beta^2 = n^2_0 k^2 + (1 \pm m) b / \sqrt{c}$$ \hspace{1cm} (3)

where

$$b = b_1 r_o^2 \quad \text{and} \quad c = c_1 r_o^2.$$

Kaushal also showed that the constant b is given by:

$$b = 8 c^{3/2} (m + 2) + 4 ac$$ \hspace{1cm} (4)

where

$$a = a_1 r_o^2.$$

Here, the constants a, b, and c are dimensionless.

II.2 Chromatic Dispersion

Based on the additive effect of the material dispersion, D_m, and the waveguide dispersion, D_w, the chromatic dispersion, D_c, is obtained [9]. Detailed analysis for both dispersion types are given in the following subsections.

26
II.2.1. Material Dispersion

The material dispersion is included in the wavelength dependence of the axial value of the refractive index, \(n_a \), of the fiber material having the form \([9]\):

\[
D_m = \frac{\lambda}{2 \pi c^*} \frac{d^2 n_a}{d\lambda^2}
\]

(5)

where \(c^* \) is the free space speed of light.

The value of \(n_a \) is represented by the three-term Sellmeier equation \([8]\):

\[
n_a^2 = 1 + \sum \frac{A_i \lambda_i}{\lambda^2 - \ell_i^2}
\]

(6)

where \(A_i \) are coefficients related to the material oscillator strength and \(\ell_i \) are the corresponding oscillator wavelengths. The values of \(A_i \) and \(\ell_i \), in terms of the germania percentage, \(x \), in the wavelength range \(0.365 \leq \lambda (\mu m) \leq 4.28 \), are given by \([8]\):

\[
\begin{align*}
A_1 &= 0.6961663 + (0.11070342) x \quad (7-a) \\
A_2 &= 0.4079426 + (0.31021588) x \quad (7-b) \\
A_3 &= 0.8974794 + (0.04331109) x \quad (7-c) \\
\ell_1 &= 0.0684043 + (0.00056) x \quad (7-d) \\
\ell_2 &= 0.1162414 + (0.03772565) x \quad (7-e) \\
\ell_3 &= 9.8961610 + (1.94577) x \quad (7-f)
\end{align*}
\]

II.2.2. Waveguide Dispersion

Assuming only the fundamental mode propagation, the waveguide dispersion can be obtained from the relation \([2, 4, 5, 11]\):

\[
D_w = -\frac{1}{2 \pi c^*} \left(2 \frac{d^2}{d\lambda^2} - \lambda^2 \frac{d^2}{d\lambda^2} \right)
\]

(8)

III. RESULTS AND DISCUSSION

The values of the constants \(a \) and \(c \) together with the core radius, \(r_o \), and the wavelength, \(\lambda \), are chosen to give a positive value for \(n^2(r) \). For single-mode operation, the value of \(r_o \) is chosen between 3 \(\mu m \) and 5 \(\mu m \) and the constants \(a \) and \(c \) were obtained to have the range of values:

\[
1500 \leq a \leq 2000
\]

and

\[
2000 \leq c \leq 4000
\]

It was found that increasing the value of \(a, c \) or both over this range (keeping the fiber radius in the range of single-mode operation) will decrease the value of the core refractive index below the well known values for glass. Fig. 1. The same result was obtained at higher values of \(\lambda \). Fig. 2.
Figure 3 shows that a core radius of 5 μm gives a better profile for the core refractive index than thinner ones, giving less values for the refractive index near the core-cladding interface. This is the reason for the more emphasis given to this radius in our study. The SiO₂-GeO₂ glass was studied through different values of the germania percentage, x. Fig. 4. It is observed that the increase in the value of x yields a shifted profile as expected because the refractive index of the germania glass is greater than that of the silica one.
The material dispersion was directly obtained through Eqs. (5-7) and the waveguide dispersion was obtained through Eqs. (3) and (8). The negative sign in Eq. (3) is chosen because the positive sign results in a propagation constant, β, greater than n_0k, which is forbidden.

Adding both dispersion types, the chromatic dispersion was then obtained. Figures 5 and 6 represent the obtained results for both SiO_2 ($x=0$) and GeO_2 ($x=1$) glasses, respectively. It is observed that, for SiO_2 glass, the material dispersion tends to zero at a wavelength, $\lambda_0 = 1.27 \, \mu\text{m}$, in consistence with the value found in Ref. [9], while the corresponding value in the GeO_2 glass is observed at $1.74 \, \mu\text{m}$. From both figures, it is noted that waveguide dispersion, when considered, results in a decrease in the value of λ_0.

![Fig. 5. Chromatic (Total) Dispersion for Silica Fibers.](image)

D_m is the material dispersion.

D_w is the waveguide dispersion.

![Fig. 6. Chromatic (Total) Dispersion for Germania Fibers.](image)

D_m is the material dispersion.

D_w is the waveguide dispersion.

The zero chromatic dispersion wavelength, λ_m, is displayed against the germania percentage, x, in Fig. 7. The upper curve is drawn when only the material dispersion, D_m, is considered while the other curves are drawn when the waveguide dispersion is added to the material dispersion. The figure shows that the value of λ_m increases linearly with x at constant radius. At a core radius of $5 \, \mu\text{m}$, as an example, this variation is:

$$\lambda_m (\mu\text{m}) = 0.1836 \, x + 0.7221 \quad (9)$$

It is clear from Fig. 7, that increasing the core radius, r_m, will shift the λ_m line up, i.e., the effect of the waveguide dispersion is less. This continues until the line of the material dispersion is reached for higher values of the core radius corresponding to multimode
operation, at which the waveguide dispersion has a negligible effect in agreement with that obtained in Ref. [9]. Figure 7 shows also that the increase in the value of the constants a and c yields a very small effect on the value of λ_0.

![Graph showing the dispersion of λ_0 against the germania percentage, x.](image)

Fig. 7. Zero Dispersion wavelength, λ_0, against the germania percentage, x. D_m denotes the variation of λ_0 when only the material dispersion is considered. Curves 1, 2 and 3 give the variation of λ_0 for total dispersion.

- In curve 1, $r_0 = 5 \, \mu m$, $a = 1500$, $c = 3700$
- In curve 2, $r_0 = 4 \, \mu m$, $a = 1500$, $c = 3700$
- In curve 3, $r_0 = 5 \, \mu m$, $a = 2000$, $c = 4000$

V. CONCLUSION

This work represents the calculation of the chromatic dispersion, D_r, for inhomogeneous fibers of SiO_2-GeO_2 glasses. It is found that the value of the zero dispersion wavelength, λ_0, increases with the germania ratio, x. According to the obtained results and for the considered fiber type, one can conclude that better operation is achieved around 0.7 μm for silica and around 0.9 μm for germania glasses.

REFERENCES

