HANK-1, a new compact, efficient and secure block cipher algorithm for limited resources Devices

By

Lt.Col. Hazem. M. Eldeeb1 Prof. Dr. Khaled Ali Shehata2 Dr. Nabil Hamdy Shaker3 Col.Dr. Ahmed Ali Abdel Hafez4

hazem.eldeeb@gmail.com k_shehata@aast.edu nabilansary@yahoo.com aabelhafez@gmail.com

1Egyptian Armed Forces 2Arab Academy for Science & Technology and Maritime Transport. 3Misr International University 4Egyptian Armed Forces

Abstract

In this paper we present a new block cipher algorithm that can be used to secure the date processed and transmitted over devices with limited resources. The algorithm is balanced Feistel structure cipher algorithm which can be implemented efficiently on devices with low power consumption and low processing power. The building components of the algorithm have good cryptographic properties in comparison with other cipher algorithms and it has passed the NIST statistical test suite with very good results.

Keywords:
Feistel Networks, Constrained environments, Block Cipher, Maximal distance separable codes, substitution Box, Statistical Tests, Microblaze.

1. Introduction:

As mobile phones, wireless sensors, smart cards, and other limited resources devices become popular and widely used the need for secure data transmission and processing over these devices becomes more and more important. Several cipher algorithms with different techniques have already been employed, and most of them have been broken which increases the need for higher levels of security cipher algorithms.
The main problem with limited resources devices is that the highly secured standard cipher algorithm that designed for regular computers cannot be used because of the constrained processing power, memory space and low battery power. This paper gives a detailed description of a new Feistel network block cipher algorithm which we believe it has the required high level of security and efficiency. One advantage of Feistel network algorithm is the using of the same algorithm for both encryption and decryption process. The reversibility of the algorithm is independent of the reversibility of the round function and it is ensured only by the Feistel structure.

2. HANK-1 General structure and specifications:
HANK-1 is a 128-bit balanced Feistel structure block cipher algorithm with key length equals 128 bit. In the traditional Feistel cipher, plaintext is partitioned into two equal halves (that is why it is called balanced). The round function F is applied to one half using a sub-key and the output of F is xored with the other half. The two halves are then swapped. Each round follows the same pattern except for the last round where there is no swap.

HANK-1 is adopting a different Feistel network technique; the algorithm can be seen as two traditional Feistel networks interrelated and interconnected to each other. The 128-bit plaintext block is partitioned into four 32-bit sub-blocks (L_0, L_1, R_0, R_1) instead of two. And the round sub-key block is also partitioned into four 32-bit sub-blocks (SK_0, SK_1, SK_2, SK_3) such that sub-key (SK) = $SK_0 || SK_1 || SK_2 || SK_3$.

The plaintext block is processed according to the below equations:
\[
L_{0_{i+1}} = L_{0_i} \oplus F_1(SK_{1_i}, R_{0_i} \oplus SK_{0_i} \oplus ROL(L_{1_i})) \quad \text{Equation (1)}
\]
\[
R_{1_{i+1}} = R_{1_i} \oplus F_2(SK_{2_i}, L_{1_i} \oplus SK_{3_i} \oplus ROL(R_{0_i})) \quad \text{Equation (2)}
\]

In accordance with the above equations, after one round, each 32-bit plaintext sub-block is dependent on two sub-blocks. And after one cycle, each 32-bit sub-block is dependent on the other three sub-blocks.

3. Key Expansion:

Key expansion algorithm (it is also called key scheduling) is the process of generation the set of sub-keys required for the encryption/decryption algorithm. It must be impossible to recover the cipher key knowing one or more of the sub-keys.

In HANK-1 key expansion algorithm, the encryption key is expanded into eight different sub-key, each of length 128-bit (4x32-bit word).

The algorithm consists of eight rounds, initialization round and seven identical rounds. In the initialization round, a fixed random value MASK is xored with the encryption key before the substitution box in order to deform the special pattern in the cipher key like
all ones, all zeros and any other regular pattern. Each 32-bit word is composed according to the following equation:

\[SK(n+1)_i = SBOX[(SK_n)_i \ll l \oplus SK(n+1)_{i-1}] \]

Equation (3)

\[n : \text{ sub-key word index} \quad [0:3] \]
\[i : \text{ round number} \quad [0:7] \]

The algorithm is easy to describe and analyze and exhibit a high degree of non-linearity to prevent the full determination of round key differences from cipher key differences. There is no symmetry between the rounds (i.e the round transformation is not the same for all rounds due to the variable circular shift between rounds).

4.HANK-1 Round Functions (F)

The round function of any Feistel structure cipher algorithm is the core of security and the main source of confusion and diffusion in the algorithm. The most important requirement for the round function is to be single value function (i.e for all the set of plaintext P and encryption key K, there is a function \(F^{-1} \) such that \(F^{-1}(F(P,K),K)=P \)). The function also must be complex, highly non-linear, easy to analyze and implement and it could be irreversible because of the nature of Feistel structure.

In HANK-1, there are two round functions (\(F1,F2 \)), their general structures are identical but each one is parameterized by the XOR process with different portion of the round sub-key and employing different diffusion matrix.

The detailed structure of the round function is shown in figure(3), the diffusion part is represented in the 4x4 diffusion matrix which will be explained in details later. The confusion part is represented in the xoring (whitening) process with the sub-key word \(SK_n \), followed by substitution with four non-linear s-boxes. The round function is irreversible, single value and highly non-linear.
5. Non-linear(S-box) Component:
The strength of various Feistel networks algorithms and specifically their resistance to
differential and linear cryptanalysis is tied directly to their S-boxes [4].
S-box (substitution table) is called also multi-output Boolean function; it is a mapping
of m-bit inputs to n-bit outputs. It is generally the only nonlinear step in an algorithm
and it gives the block cipher its security. S-box is widely used in cryptographic
algorithms design. Therefore, each cryptographic property of s-box is an important topic
in the security evaluation.
Table (1) summarizes the cryptographic properties for Boolean functions:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-linearity</td>
<td>the number of bits that must be changed in the function truth table to reach the closest affine function.</td>
</tr>
<tr>
<td>Balance</td>
<td>a function f is said to be balanced if the number of ones in its truth table equals the number of zeros.</td>
</tr>
<tr>
<td>Correlation immunity</td>
<td>a function f is said to be (m)th order correlation immune if there is no correlation between the function and all linear combinations of the input with Hamming weight (\leq m).</td>
</tr>
<tr>
<td>Differential uniformity</td>
<td>for every fixed nonzero input difference, there is no output difference occurs with high probability.</td>
</tr>
</tbody>
</table>

Table (1) cryptographic properties of Boolean function

The components of multi-output Boolean interact and affect each other. Although each component function has certain cryptographic properties, the multi-output function constructed from them does not necessarily take on similar properties. Hence, for multi-output function we must regard it as integrated one.
There are several methods to construct or choose S-box. The following three methods are very interesting:

1. **Random and test choosing.** The s-box is generated randomly with any software random number generator then the whole substitution table is tested for the desired properties. The size of the s-box must be large (8-bit input or more) in order to be strong and secure.

2. **Mathematical construction**. The s-box is constructed according to mathematical Principles so that they have proven security against differential and linear cryptanalysis [12]. Power functions generation is an example for this method.

3. **Custom construction**. In this approach the s-box is constructed in a custom manner to realize a certain property. An example for this method is Kam&Davida structure sbox.in this structure, every output bit is a function of all input bits [1].
Hank-1 round function deploy two different substitution boxes (S-box A, S-box B) each of 8-bit input size. The first substitution box (S-box-A) has been constructed based on mathematical basis which is the power function. Power functions are functions based on a transformation $\alpha \rightarrow \alpha^d$ for different exponents d. The calculations is performed over the finite field GF(2^8) and irreducible polynomial equals:

$$F(x) = x^8 + x^7 + x^6 + x^5 + x^4 + x^2 + 1.$$

The exponents is calculated according to Dobbertin & Niho function shown below which gives maximum non-linearity:

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Conditions on k</th>
<th>Condition on n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_{i=0}^{n/2} 2^k$</td>
<td>$\gcd(k,n) = 1$ and $0 < k < t$</td>
<td>$n \equiv 0 \pmod{4}$</td>
</tr>
</tbody>
</table>

The dimension (n=8) and 8 mod 4 =0 then $t=4$ because $n=2^8 \times t$

We choose $k=3$ such that $\gcd(3,8)=1$ then:

$$\text{Exponent} = \sum_{i=0}^{n/2} 2^k = 2^{(0+3)} + 2^{(1+3)} + 2^{(2+3)} + 2^{(3+3)} + 2^{(4+3)} = 4681$$

The second substitution box (S-box-B) has been constructed randomly. All the s-box lookup table elements have been generated with a software random generator with values between [0:255], then the whole S-box has been tested for the differential uniformity property until the desired value has been reached. Table (2) shows the values for the cryptographic properties of the s-boxes.

<table>
<thead>
<tr>
<th>Property</th>
<th>Walsh Maximum</th>
<th>Autocorrelation Maximum</th>
<th>Differential Uniformity</th>
<th>Algebraic degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-Box A</td>
<td>32</td>
<td>48</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>S-Box B</td>
<td>68</td>
<td>100</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

Table (2) cryptographic properties values for HANK-1 s-boxes

6. Linear (Diffusion) Component:

Claude Shannon mentioned that confusion and Diffusion are basic requirement for all modern cryptosystems [4]. Diffusion means that, every plaintext bit should influence every ciphertext bit and every key bit should influence every ciphertext bit, this is could be realized by using linear transformations. One of the most interesting and popular kind of linear transformations is these matrices generated on the basis of maximal distance separable codes (MDS-codes). Such linear transformations guarantees large number of active S-boxes in the context of differential or linear cryptanalysis. There are two basic requirements to MDS matrices of modern ciphers:

1. The maximum distance properties.
2. The effectiveness of implementation.
The first requirement: if every square sub-matrix is nonsingular (its determinant is not equal to 0), then it is a necessary and sufficient condition to ensure that the matrix is MDS.

The Branch Number (β) of a linear transformation (T) is a measure of its diffusion power. It is the minimum number of nonzero elements in the input and output when the input elements are not all zero.

The second requirement: an efficiently implemented MDS matrix is a matrix which perform less number of multiplication and the number of ones in each entry is minimum. This is achieved by using circulant matrix where every row is consisted of the same element, shifted over one position ($x_{i,j} = x_{0,j-i \mod n}$).

The proposed diffuser in HANK-1 algorithm consists of two matrices for F1 and F2 each is 4X4 MDS matrix. By a special software tool that has been designed by us for this purpose, Each matrix has been generated randomly and then tested for the MDS property. The branch number for each is optimal and equals five, which is considered high diffusion rate and guarantees a maximum number of active s-boxes.

\[
\begin{pmatrix}
 2 & 3 & 1 & 1 \\
 1 & 2 & 3 & 1 \\
 1 & 1 & 2 & 3 \\
 3 & 1 & 1 & 2 \\
\end{pmatrix}
\begin{pmatrix}
 4 & 1 & 3 & 4 \\
 4 & 4 & 1 & 3 \\
 3 & 4 & 4 & 1 \\
 1 & 3 & 4 & 4 \\
\end{pmatrix}
\]

Figure 4 MDS Matrices for round functions F1 And F2

The matrices are circulant matrices and the Hamming weight of any element is ≤ 2 which decrease the number of multiplication operation and so guarantees fast processing time and efficient implementation on either software and hardware platforms.

7. Mode Of Operation and the Padding technique

In block cipher, in order to prevent the creation of a code book of the plaintexts and corresponding ciphertexts as a result of the encryption of identical plaintext blocks into identical ciphertext blocks under the same encryption key, another process is used to combine the plaintext with another value or some sort of feedback. This process is known as the mode of operation. The mode of operation must not negatively affect the security and efficiency of the underlying cipher [2].

HANK-1 employs cipher block chaining (CBC) mode of operation. Each plaintext block is xored with the preceding 128- bits of ciphertext except the first plaintext block that is xored with non-secret nonzero random value called the initialization vector (IV). This means that each ciphertext block is dependent on all the preceding ciphertext block and consequently on all the preceding plaintext blocks.
In some certain application like file or hard desk and digital voice frames encryption, the last incomplete plaintext block must be encrypted to the same length of ciphertext block, so a suitable padding mechanism should be used to handle this problem. The padding technique adopted in HANK-1 realize this concept by xoring the last n-bit incomplete plaintext block with n-bit of the encryption of the last complete ciphertext block. Figures (5, 6) illustrate the HANK-1 encryption and decryption in CBC mode with the employed padding mechanism.

8. Security Assessment:
In this section we present a set of tests performed to evaluate the randomness and the security strength of HANK-1 cipher algorithm.

Image Encryption:
The two bitmap pictures shown in figures (7,8) illustrate what goes on in HANK-1 CBC encryption. The algorithm changes the pixels color into different colors and also changes the whole pattern. The attacker doesn't learn what the original colors were, and what the image was.
Avalanche effect:
One of the most important metrics in cryptography for cipher algorithms specially block cipher is that a slight change (flipping single bit) in either the plaintext or the cipher key causes a significant change in the output ciphertext (typically half the ciphertext change) [1].

Table (2) shows the results taken from HANK-1 when we change one bit of the plaintext for different bit positions:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Bit changed</td>
<td>54</td>
<td>63</td>
<td>66</td>
<td>53</td>
<td>63</td>
<td>54</td>
<td>54</td>
<td>59</td>
<td>57</td>
<td>61</td>
<td>55</td>
<td>66</td>
<td>74</td>
<td>80</td>
<td>68</td>
<td>71</td>
</tr>
<tr>
<td>Bit Position</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>No. Bit changed</td>
<td>66</td>
<td>69</td>
<td>63</td>
<td>66</td>
<td>68</td>
<td>62</td>
<td>67</td>
<td>63</td>
<td>66</td>
<td>54</td>
<td>72</td>
<td>63</td>
<td>67</td>
<td>62</td>
<td>57</td>
<td>72</td>
</tr>
<tr>
<td>Bit Position</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>No. Bit changed</td>
<td>63</td>
<td>66</td>
<td>63</td>
<td>64</td>
<td>57</td>
<td>69</td>
<td>62</td>
<td>69</td>
<td>68</td>
<td>63</td>
<td>63</td>
<td>60</td>
<td>69</td>
<td>69</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Bit Position</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
</tr>
<tr>
<td>No. Bit changed</td>
<td>56</td>
<td>76</td>
<td>59</td>
<td>65</td>
<td>58</td>
<td>72</td>
<td>67</td>
<td>65</td>
<td>72</td>
<td>73</td>
<td>66</td>
<td>63</td>
<td>80</td>
<td>64</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>

The same test has been repeated with the cipher key and a similar results has been achieved.

Statistical Tests:
In symmetric cryptography, suitable metrics are needed to investigate the degree of randomness for a binary sequence. (NIST) Statistical Test suite and is an application used to evaluate the randomness of a binary sequence. It consists of set of tests based on hypothesis testing. A hypothesis test is a procedure for determining if an assertion about a characteristic of a population is reasonable. In this case, the test involves determining whether or not a specific sequence of zeroes and ones is random. This process is performed in the following steps [6]:

1. State the null hypothesis. “Assume that the binary sequence is random”.
2. Compute a sequence test statistic. “Testing is carried out at the bit level”.
3. Compute the P-value. “P-value ∈ [0, 1]”.
4. Compare the P-value to α, where α ∈ [0.001, 0.01].

Such that P-value is the probability that the chosen test statistic will assume values that are equal to or worse than the observed test statistic value, and α represent the significance level.

Success is declared whenever P-value ≥ α; otherwise, failure is declared.

A file of size 5 M byte in binary format was taken from the output of HANK-1 cipher algorithm working in CBC mode of operation with the input plaintext block equal zeros and non-zero random value for the initialization vector (IV).

Table (3) shows the tests results:
Table (4) Statistical Tests results for HANK-1 cipher algorithm

<table>
<thead>
<tr>
<th>No.</th>
<th>Statistical Test</th>
<th>Average Calculated Test Statistic</th>
<th>Threshold Value</th>
<th>Overall Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frequency (Monobit)</td>
<td>0.82662</td>
<td>3.7469</td>
<td>Pass</td>
</tr>
<tr>
<td>2</td>
<td>Serial</td>
<td>3.051403</td>
<td>5.9371</td>
<td>Pass</td>
</tr>
<tr>
<td>3</td>
<td>Poker</td>
<td>131.0345</td>
<td>154.3002</td>
<td>Pass</td>
</tr>
<tr>
<td>4</td>
<td>Runs</td>
<td>1.725407</td>
<td>3.7469</td>
<td>Pass</td>
</tr>
<tr>
<td>5</td>
<td>Longest Runs of Ones</td>
<td>5.234451</td>
<td>12.5689</td>
<td>Pass</td>
</tr>
<tr>
<td>6</td>
<td>Binary Matrix Rank</td>
<td>1.906176</td>
<td>5.9371</td>
<td>Pass</td>
</tr>
<tr>
<td>7</td>
<td>Autocorrelation</td>
<td>0.864537</td>
<td>3.7469</td>
<td>Pass</td>
</tr>
<tr>
<td>8</td>
<td>Maurer's Universal</td>
<td>0.927862</td>
<td>3.7469</td>
<td>Pass</td>
</tr>
<tr>
<td>9</td>
<td>Block Frequency</td>
<td>15.77136</td>
<td>17.0794</td>
<td>Pass</td>
</tr>
<tr>
<td>10</td>
<td>Non-overlapping Template Matching</td>
<td>8.475958</td>
<td>15.4894</td>
<td>Pass</td>
</tr>
<tr>
<td>11</td>
<td>Overlapping Template Matching</td>
<td>7.324768</td>
<td>11.0442</td>
<td>Pass</td>
</tr>
<tr>
<td>12</td>
<td>Lempel-Ziv Compression</td>
<td>0.759953</td>
<td>3.7469</td>
<td>Pass</td>
</tr>
<tr>
<td>13</td>
<td>Approximate Entropy</td>
<td>8.096573</td>
<td>15.4894</td>
<td>Pass</td>
</tr>
<tr>
<td>14</td>
<td>Cumulative Sums (Cusum)</td>
<td>1.417298</td>
<td>3.7469</td>
<td>Pass</td>
</tr>
<tr>
<td>15</td>
<td>Random Excursions</td>
<td>5.389472</td>
<td>11.0442</td>
<td>Pass</td>
</tr>
<tr>
<td>16</td>
<td>Random Excursions Variant</td>
<td>1.254711</td>
<td>3.7469</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Histogram of ASCII character set

Figures (9, 10) illustrate the ASCII character set and their frequency distribution for the text of the novel “The Merchant of Venice” before and after the encryption. It can be seen that unlike the plaintext, the ciphertext is uniformly distributed.
9. Software Implementation and Performance:
HANK-1 has been implemented in ANSI C language on Microblaze microprocessor. Microblaze is a 32-bit 'Harvard Architecture' RISC soft-core (synthesizable) processor that enables embedded developers to tune performance to match the requirements of target applications. The basic architecture consists of 32 general-purpose registers, an Arithmetic Logic Unit (ALU), a shift unit, and two levels of interrupt and it executes most instructions in two clock cycles [7]. We can configure this basic design with more advanced features to allow us to balance the required performance of the target application against the logic area cost of the soft processor.

For the implementation of HANK-1, Microblaze has been configured with 62.5 MHz clock frequency, 64K bytes on-chip (local) RAM with no cache memory for either data or instructions. For test purpose, a 32-bit soft-core timer/counter has been connected to microblaze processor local bus (PLB) in order to count the CPU cycles.

The Linker Script has been configured to place the instructions in the local RAM and place the data in the flash. The steps shown in Algorithm(1) illustrate the process of calculating the number of CPU cycles.

HANK-1 encrypts one byte of input block in 5944 CPU cycles

\[
\text{Byte encryption time (seconds)} = \frac{\text{Number of CPU cycles}}{\text{Frequency (HZ)}}
\]

According to the above equation, HANK-1 throughput = 82.1468 K bit/s
10. Conclusions:
A new 128-bit Feistel structure block cipher algorithm with 8-rounds working in CBC mode of operation has been presented.
In this paper the high level of security of the proposed cipher algorithm have been shown through some test like NIST suite statistical tests, avalanche effect, histogram of ASCII character set and an image encryption example .It have also shown that HANK-1 algorithm has a compact size and high throughput which makes it suitable for limited resources devices.

References:
[3] Claude Carlet ,Vectorial Boolean Functions for Cryptography , University of Paris 8, France
[4] Claude Carlet ,Boolean Functions for Cryptography and Error Correcting Codes , University of Paris 8, France

Nomenclatures:

ROL…… 1-bit Rotate Left
GCD…… Greatest Common Divisor
≪≪≪≪…… circular shift left with i bits
SPI………Serial Peripheral Interface
⊕ ……..Bit-wise xor