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ABSTRACT 

 

A number of illnesses that affect peopleôs daily life are caused by numerous sleep disorders 

which usually have common symptoms. People suffering from such illnesses are more 

vulnerable to household and work accidents. While there is no treatment for these kinds of 

neurological disorders, symptoms can be managed with behavioral and medical therapies to 

reduce the intensity and occurrence rates.  

The scope of this thesis is to design and implement a portable system that will assist Narcoleptic 

patients, in real-time, to aid them into leading a more productive life. The system consists of 

two main units, a feature extraction unit based on the Wavelet Packet Transforms (WPT), and 

a classification unit based on the Support Vector Machine (SVM) algorithm. The SVM used is 

a non-linear and multi-class classification using the Radial Basis Function (RBF) as the kernel 

function. 

The design undergoes two testing processes, the first one is a software simulation using 

MATLAB 2014a tool, while the second is the RTL simulation using ModelSim 6.3a. The 

hardware RTL simulation is compared to the software simulation to determine the average error 

of the feature extraction unit, and the classifier accuracy. The feature extraction unit achieved 

an average percentage of error 0.1618% with respect to the software simulation, while the 

classifier achieved an average accuracy rate of 92.14% and 90.5% by software and the RTL 

simulations respectively. 

The design is synthesized and routed ï using Quartus II V. 13 ï on Cyclone IV 

EP4CGX30BF14C6 chip from Altera. The gate level simulation resulted with the same results 

as the RTL simulation.  

The implementation achieved an acceptable time delay, where the feature extraction and the 

classification are executed in 3.85ms. The total area usage of the selected FPGA chip is 97.68% 

of the available logic elements, 8.42% of the available memory bits, and 32.5% of the available 

embedded multiplier units.  
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Chapter 1  

Introduction  

1.1 Introduction  

Research in Biomedical engineering and its applications has been rapidly growing over the past 

few years, as medical treatment is becoming more dependent on the technological advances. 

The main purposes of this field is to provide humans with better, healthier and more 

comfortable medical care, which reflects on the society by leading to a better productive life 

for its citizens. 

Research in biomedical engineering is showing promising new treatments for illnesses and 

disorders that medical science on its own cannot provide an appropriate medication. Currently 

many leading universities are focusing on biomedical research for its importance to human 

health and lifestyle.  

1.2 Narcolepsy Definition, Symptoms, and Diagnosis 

Narcolepsy is a chronic neurological disorder of sleep regulation that affects the sleep cycle. It 

is characterized by uncontrollable recurring episodes of daytime sleepiness. The episodes may 

last from few minutes up to a complete hour and it is accompanied by intrusion of the dreaming 

state - known as the Rapid Eye Movement (REM) - into the waking state [1].  

Its most common symptoms include Excessive Daytime Sleepiness (EDS), loss of muscle tone 

(Cataplexy), distorted perceptions (Hallucinations), and the inability to move or to talk (Sleep 

Paralysis). Referring to a survey carried by the UK Narcolepsy patient association based to the 

Beck Depression Inventory (BDI), degrees of depression are common among narcoleptic 

patients, which is an expected evolution to a series of social, educational, psychological, and 

financial difficulties experienced by a narcoleptic patient. Furthermore narcoleptic individuals 

are at an elevated risk for motor vehicle, occupational and household accidents.  

Origin and causes of Narcolepsy are still unclear, but the general consensus is the patient 

genetics accompanied by an environmental trigger of some sort ï virus, for example ï may 

affect the brain chemicals and causes Narcolepsy. 
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Diagnosis of Narcolepsy commonly performed at a sleep clinic, by recording the brain 

activities of the patients during his sleep, followed by a visual scoring of the recorded data. 

1.3 Thesis Objective and Motivation: 

Approximately 3 million people world-wide have Narcolepsy. The prevalence of Narcolepsy 

is approximately 0.05% of the population, however it often goes unrecognized. Although 

Narcolepsy is as common as many other conditions (such as Parkinson's Disease or Multiple 

Sclerosis), fewer people know about Narcolepsy, and it can sometimes be mistaken for other 

medical conditions such as depression, psychiatric illness, epilepsy, chronic fatigue syndrome, 

or a side-effect of medication. 

Narcoleptic patients are always at high risks due to sudden sleep episodes or cataplexy. For 

example if the patient is driving a car while an episode occurs, this might lead to a severe 

accident. Life style changes are required, such as ensuring a regular sleep schedule, avoiding 

periods of sleep deprivation, scheduling several short naps along the day usually before driving, 

avoiding occupations that involve excessive driving and operating heavy machinery, avoiding 

caffeine and alcohol.  

Narcolepsy is diagnosed using polysomnography (PSG) according to the standard written in 

1968 [2] which requires the patient to spend the night at a sleep clinic in order to record his 

brain activity for a later analysis that would be performed by a sleep physician. Draw backs for 

this classical method are:  

1- Long hours spent by the patient at sleep clinic. 

2- Unfamiliarity of the clinic to the patient may leads to in-accurate results. 

3- Scoring the sleep stages and the classification of the disorder are made by the human 

eye which might lead to in-accurate results. 

4- Real-time analysis is impossible with the classical scoring method. 

The scope of this thesis is to design and implement a high speed real-time system that predicts 

narcoleptic episodes. The proposed system design consists of a memory for data logging, 

feature extraction block, the classifier block, and finally a user interface. The system is 

designed to be small enough for portability, fast enough for real-time computation, simple 

enough for ease of use ï using the least possible number channels - while maintaining the 
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classifier high accuracy rate, and most importantly reducing power consumption to the 

minimum.  

Since Narcolepsy puts the patient in danger, a real-time classifier helps narcoleptic patients live 

a better and more productive life as it would give a good prediction before the occurrence of 

an episode. These predictions will allow the patient to take proper precautions when needed to 

prevent accidents. It will also help improving the accuracy rate over the conventional 

classification as patient will sleep in his own familiar environment. The physician will be able 

to review the data logged at any time for the purpose of adjusting medications. 

1.4 Thesis Outline 

This thesis is organized as follows: 

Chapter 2 provides all the necessary medical background and the literature review related to 

the Narcolepsy disorder. A detailed discussion of the medical terminology, definitions and its 

standards is presented in details. Furthermore previous work in this field of research is 

discussed and summarized. 

Chapter 3 discusses in details the theory of wavelet transforms and the support vector 

machines, as the system designed in this thesis uses these discrete wavelet transform for the 

feature extraction and the support vector machines for its classification. 

Chapter 4 presents the full details of the proposed design and the software simulation 

conducted for each building block constructing this design. 

Chapter 5 presents the full implementation of the design proposed in chapter 4, along with all 

the RTL and post-routing simulations conducted to test this system functionality.  

Chapter 6 summarizes this thesis, discussing the results found in chapter 4, and concluding 

some recommendations for future work to improve the developed system. And finally the work 

is terminated by a list of references. 
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Chapter 2  

Medical Background and Literature Review 

In this chapter, both the medical background and all the recently published studies related to 

the scope of this thesis, are introduced. The medical background dealing with the conventional 

methods of narcolepsy treatments is discussed in the next section, while in the second section 

a discussion of the recently developed assistive devices is discussed. 

2.1 Classical Narcolepsy Classification; Standards of Sleep Stage Recording 

Narcolepsy classification is mainly based on polysomnography, otherwise called as sleep study. 

It's a process at which a complete recording of the brain waves is acquired while the patient is 

asleep during the night. These recordings consist of Electroencephalography (EEG), 

Electrooculography (EOG), and Electromyography (EMG) waves followed by a visual scoring 

of these recording by a physician [2]. 

Since 1968 visual sleep stage scoring has been performed according to the guidelines 

established by the committee led by Allan Rechtschaffen and Anthony Kales. The aim of these 

guidelines often called the ñManual of Rechtschaffen and Kalesò (RKS), was to increase the 

comparability of results from different laboratories [2].  

The manual is based on the psychophysiological knowledge of the sleep process at that time, 

providing the minimum requirements for polysomnographic sleep studies of adult humans. It 

also provides the classification of sleep stages, standardized terminology and definitions of the 

different parameters obtained from sleep recordings.  

Since these guidelines were designed for paper recordings, they contains definitions for filters, 

gain, paper speed, pen deflection, and the number of channels recorded, etc. Some of the 

requirements and instructions are no longer necessary during recording with the increasing use 

of digital polysomnograph in which the parameters can be adjusted afterwards.  

In the following sub-sections, a brief introduction of the human sleep cycle will be introduced, 

followed by a more detailed explanation of the different alertness stages that occurs in a normal 

cycle, and finally the electrode placement and signal considerations for accurate classification. 
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2.1.1 Sleep Study 

Nocturnal Polysomnography (PSG) also known as sleep study, is a comprehensive recording 

of the bio-physiological changes that occur during sleep. It is usually performed at night, when 

most people sleep. The PSG monitors many body functions including brain (EEG), eye 

movements (EOG), muscle activity or skeletal muscle activation (EMG) and heart rhythm 

(ECG) during sleep. 

The human sleep cycle consists of different states of alertness known as the sleep stages. Sleep 

stages are divided into two groups, Rapid Eye Movement (REM) and None Rapid Eye 

Movement (NREM). The REM stage is also known as the state at which dreams occur and it 

is characterized by a visible movement in the eyes. The NREM stage consists of 4 stages that 

describe the transition from wakefulness to the dreaming state [2].  

In a normal sleep cycle, first stage occurs for approximately 10 minutes, followed by the second 

stage for about 30 minutes, stage 3 is usually short and followed by stage 4 that can last up to 

40 minutes, finally REM state occurs from 5 to 20 minutes. In a typical 8 hours sleep, four to 

five complete sleep cycles occur where each cycle lasts longer as its respective REM stage 

extends. The standard sleep cycle can be seen in the illustration of Figure 2.1.  

The sleep stages are scored according to RKS manual written in 1968 [2]. 

 

Figure 2.1: Standard Human Sleep Cycle 
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2.1.2 Alertness Stages: 

In this section, a full and detailed explanation of the different stages in human sleep cycle along 

with their corresponding signal characteristics and descriptions is explained. The human state 

of mind can be determined with the following EEG bands as seen in Table 2.1 

Table 2.1: EEG Bands and Corresponding State of Mind 

EEG Band Frequency Range State of mind 

Beta 14 ï 30 Hz Associated with anxiety and depression or use of 

sedatives. 

Highly alert and focused 

Spindles 12 ï 14 Hz Represents periods where the brain is inhibiting 

processing to keep the sleeper in a tranquil state 

Alpha 8 ï 13 Hz Present when awake but eyes closed (relaxed but alert). 

Disappear when eyes are open or with mental 

concentration. 

Theta 4 ï 7 Hz Drowsiness or Slow brain activity 

Delta 0.5 ï 3.5 Hz Deep Sleep state 

Woke-up Stage (Stage W) is characterized by low voltage (10 ï 30 ɛV) and mixed EEG 

frequencies, mainly consists of alpha activity [2]. 

Stage 1 is defined by a relatively low voltage, mixed frequency EEG with a prominence of 

activity in the 2-7 Hz range. Stage 1 occurs most often in the transition from wakefulness to 

the other sleep stages following body movement during sleep. Stage 1 tends to be relatively 

short during nocturnal sleep, ranging from 1 to 7 minutes. The highest voltage in the 2-7 Hz 

activity is about 50-75 ɛV and tends to occur in irregularly spaced bursts mostly during the 

latter portions of the stage. Vertex sharp waves may occur; their amplitude can reach up to 200 

ɛV. Slow eye movement may be present during the first stage. Stage one is scored when clearly 

defined K complexes, a sharp negative wave followed by a slower positive component, and 

sleep spindles are absent and the epoch is characterized with alpha activity combined with 

mixed frequency EEG and the amount of alpha activity is less than 50% of the epoch [2].  

Stage 2 is characterized by wave patterns, sleep spindles, K complexes and the absence of slow 

waves EEG. Traces of low voltage activity in the frequency range of 12-14 Hz may begin to 

appear in stage 1 as the transition to stage 2 approaches, but will only be characterized as stage 

2 when the rhythmic bursts are clearly visible for at least 0.5 seconds. If the time between two 



7 
 

succeeding occurrences of sleep spindles or K complexes is lower than 3 minutes, this interval 

is scored as stage 2 otherwise it is scored as stage 1 [2]. 

Stage 3 is characterized by slow EEG waves slower than 2 Hz with amplitudes above 75 ɛV. 

In order to score a stage 3, the previously identified characteristics must be present for 20 to 

50% of an epoch. Sleep spindles and K complexes may occur during stage 3 [2]. 

Stage 4 is similar to Stage 3 but having the slow waves with 2 Hz and slower with amplitudes 

above 75 ɛV appearing in more than 50% of an epoch [2]. 

Rapid Eye Movement ñREMò stage is scored when the patient's eye lids move rapidly which 

usually indicated a dreaming state. It is correlated with a set of psychological activities such as 

change in heart rate and blood pressure [2]. 

Table 2.2 summarizes the sleep stage scoring criteria [3], while Figure 2.2 illustrates the EEG 

recording for the different states from wake until REM sleep. 

Table 2.2: Outline of Sleep Scoring Criteria According to Standard Manual [3] 

Stage/State EEG EOG EMG 
Relaxed Wakefulness Eyes closed: Rhythmic alpha (8-13 Hz)  

Prominent in occipital. 
Eyes open: relatively low voltage, mixed 

frequency 

Voluntary control: REMs  

when drowsy SEMs 

Tonic activity, relatively 

high;  
voluntary movement 

NREM    
Stage 1 Relatively low voltage, mixed frequency 

May be theta 3-7 Hz activity with greater 

amplitude. 
Vertex Sharp Waves 
Synchronous high-voltage theta bursts in 

children 

SEMs Tonic activity, low level 

    
Stage 2 Background: relatively low voltage, 

mixed frequency 
Sleep Spindles: (12- 14 Hz) Ó 0.5 sec 
K complexes: Ó 0.5 sec; spindles may ride 

on Ks; Ks maximal in vertex; spontaneous 

or in response to sound. 

Occasionally SEMs near sleep 

onset 
Tonic activity, low level 

    

Stage 3 Ó 20 % Ò 50% high amplitude (Ó 75 ɛV), 

slow frequency (Ò 2 Hz); maximal in 
frontal 

None, picks up EEG Tonic Activity, low level 

    

Stage 4 > 50% high amplitude slow frequency None, picks up EEG Tonic Activity, low level 
    

REM 
Relatively low voltage, mixed frequency 
Saw-tooth waves 
Theta activity; slow alpha 

Phasic REMs Tonic Suppression; phasic 
twitches 

    

Movement Time Obscured Obscured Very high activity 
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Figure 2.2: Different Alertness Levels in the EEG Spectrum 

2.1.3 Polysomnography Waves and Their Derivations: 

This section discusses the various signals recorded during a standard polysomnography along 

with their electrode placement and derivations. 

a) Electroencephalogram (EEG)  

For a reliable recording of EEG, it is important to carefully choose the electrode placement 

according to the 10-20 system represented in Figure 2.3. A grid is placed over the skull and 

points of intersections denote electrode placement locations. The name of the system derives 

from measurements made at intervals of 10% or 20% of the total distance between landmarks. 

The four landmarks of the system are Nasion, Inion, and left and right Pre-auricular Points. 

These measurements are made for each patient specifically [3, 4].  

The standard manual recommends referential recording of one EEG channel either C3 or C4, 

referenced to an indifferent auricularly placed electrode on the contra-lateral mastoid or ear 

lobe: hence C3/A2 or C4/A1 [2, 3, 4]. Sleep stage scoring doesn't require measurement of focal 

EEG activity or regional comparisons. Rather, all of the EEG waveforms used to distinguish 

sleep stages are well visualized at C3 or C4 with the relatively large inter-electrode distance 

afforded by a contra-lateral reference. Vertex sharp waves and K complexes which are maximal 

over the vertex, are clearly evident at C3 and C4; high voltage slow waves characteristic of 
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deep NREM sleep are seen maximally in frontal regions yet seen clearly on central derivations. 

Alpha rhythm can be characterized centrally in most human beings, therefore, only C3/A2 or 

C4/A1 differential electrode is used in standard assessment of sleep stages [2, 3, 4]. 

  

Figure 2.3: 10-20 EEG Electrode Placement System 

b) Electrooculogram (EOG) 

There are two primary reasons to record eye movement activity during sleep. The first reason 

is to record the cardinal sigh of REM sleep which is an essential sleep stage scoring criterion, 

and the second one is that the onset of sleep in most human beings is accompanied by slow 

rolling eye movement. Although these slow eye movements (SEMs) are not essential to sleep 

staging, they often provide very useful information [3]. 

 

Figure 2.4: EOG electrode Placement System 
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The EOG recordings are based on the small electro-potential difference from the front to the 

back of the eye. Movement of the eye can be measured from electrodes placed beside the eyes. 

An electrode near to the corena will register a positive potential while an electrode near to the 

retina will record a negative potential. As the eye moves, the positions of the corena and retina 

change relative to the fixed position of the electrodes which will register a change in potential. 

As recommended in the standard manual, continuous referential recording of two EOG leads 

must be registered. Using either (ROC/A1, LOC/A1) or (ROC/A1, LOC/A2) electrodes; where 

ROC and LOC placement are illustrated in Figure 2.4. In the second electrode placement the 

contra-lateral references maximize the signal amplitude for both EOGs, conjugate eye 

movement will register as out-of-phase; while EEG activity reflected in the EOG channels will 

be seen as in-phase deflections [2, 3]. 

c) Electromyogram (EMG) 

In polysomnography recording the EMG is recorded from the muscles beneath the chin as 

illustrated in Figure 2.5 and used as a criterion for staging REM sleep. The electrodes are placed 

beneath the chin overlying the mentalis/submentalis muscles. The EMG is recorded bipolarly 

where the electrode pair selected should produce the record of highest quality [2, 3]. 

 

Figure 2.5: Facial Muscles 

2.1.4 General Considerations for Recording Sleep 

The minimum recommended requirement for sleep staging is four channels; one channel EEG, 

two channels EOG, and one channel EMG recordings are sufficient for correctly scoring sleep. 

From Table 2.3 [3], each channel and its recommended electrodes are summarized. 



11 
 

Table 2.3: Montage for Monitoring Sleep States [3] 

Channel Electrode placement 

EEG C3/A2 or C4/A1 

EOG ROC/A1 and LOC/A1 

EMG Mentalis/Submentalis 

2.2 Review on Narcolepsy Assistive Devices and Classification Algorithms 

In 2007, a thesis titled ñclassification of sleep staging for Narcolepsy assistive deviceò [5] was 

presented by Shuo Zhang. This research studied three different techniques for the sleep 

classification - Linear Vector Quantization ñLVQò, Probabilistic Neural Networks ñPNNò, and 

Feed Forward Neural Networks ñFF-NNò - while a hardware implementation was built for the 

most suitable technique, the FF-NN as it provided the highest accuracy. Table 2.4 summarizes 

the results of these classification methods [5]. 

Table 2.4: Classification Methods Accuracy [5] 

Classification Methods Accuracy Results 

1- Linear Vector Quantization 70% 

2- Probabilistic Neural Networks 79% 

3- Feed Forward Neural Networks 85% 

For the implementation, a micro-controller was used to control the data flow, while the DSP 

kit ñTMS320C6711ò was used to implement the feature extraction and the classifier. 

Continuous wavelet transform with Debauchee mother wavelet was used for the feature 

extraction [5, 6]. 

In 2008 a paper was published by S. R. I. Gabran. This paper tackled the same classification 

techniques as in the previous research. The results were similar to those summarized in 

Table 2.4 [7]. 

In 2009 a paper was published by S. R. I. Gabran at the IEEE EMBS annual conference [8]. 

This paper could be considered as continuation to the previously published paper by the same 

author. In this research a new techniques based on the Support Vector machine ñSVMò 

algorithm is introduced and compared to the previous classification Techniques. SVM was 

found to provide a better accuracy at 96 %. 

A prototype implementation was developed using the AR-B1831 single board computer with 

an Intel Pentium Mobile processor. The single electrode chosen for this prototype was the EEG 
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C3/A2 channel, while CWT with Debauchee mother wavelet were implemented for the feature 

extraction [8].  

However previous efforts developed similar devices to our thesis, these products were not 

hardware optimized for performance, portability, power consumption, and real-time operation. 

The scope of our research is to design and implement a hardware optimized for a narcolepsy 

assistive device working with the SVM classifiers for best performance, yet hardware 

implemented using VHDL unlike the general purpose processor device used in [8].  
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Chapter 3  

Wavelet Transforms and Support Vector Machines 

The system designed in this thesis uses the wavelet transforms for the feature extraction and 

the support vector machines for classification. In this chapter a detailed explanation of the 

theory of both wavelets and support vector machines is elaborated. 

3.1 Introduction to Wavelet Transforms 

All  the signals in practice, are time domain signals in their raw format. This representation is 

not always the best representation of the signal. In many cases, the most useful information is 

hidden in the frequency components of that signal. Frequency analysis of a signal can be 

processed using different kind of transforms. Each of these techniques has its own area of 

application, with advantages and disadvantages that are discussed in this chapter [9]. 

3.1.1 Fourier Transform  

Fourier Transform (FT) is a method used to represent any given waveform by a series of 

sinusoidal signals. If the FT of a signal in time domain is taken, the frequency-amplitude 

representation of that signal is obtained, resulting in a plot with one axis being the frequency 

while the other is the amplitude. This plot, as example in Figure 3.1, tells us how much of each 

frequency exists in the given waveform [10]. 

The FT is a reversible transform, that is, it allows to go back and forward between the raw and 

transformed signals. However, only either of them is available at any given time, that is, no 

frequency information is available in the time-domain signal, and no time information is 

available in the Fourier transformed signal. Equations 3.1 and 3.2 formulates the transformation 

process from time domain to frequency domain and from frequency domain to time domain 

respectively [10]. 

() -2J́ ft

-

X(f) = x t  × e dt

¤

¤

ñ      (3.1) 

() 2J́ ft

-

x t  = X(f) × e df

¤

¤

ñ      (3.2) 
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Figure 3.1: Time-Frequency Analysis using FT 

Figure 3.1 illustrates the disadvantage of FT, where two completely different waveforms might 

yield the same frequency domain response if they obtain the same frequency components 

regardless of their time of occurrence. In certain applications knowing the frequency 

components of a given waveform is not enough, the time of occurrence of each frequency is 

crucial to the analysis of this signal. FT will not be useful in such applications, therefore, 

another method of processing is needed. 
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3.1.2 Short Time Fourier Transform  

Since FT doesnôt work for non-stationary signals, a different technique had to be implemented 

in order to process non-stationary waveforms. The Short Time Fourier Transform (STFT) 

assumes that some portion of the given waveform is stationary on its own. In STFT  

the signal is divided into small segments, where these segments of the signal can be assumed 

to be stationary. For this purpose a window function ñwò is chosen. The width of this window 

must be equal to the segment of the signal where its stationery is valid. 

This window function is first located at the very beginning of the signal. The window function 

and the signal are then multiplied. If the window is a rectangle, with amplitude "1", then the 

product will be equal to the signal itself.  The FT of this product is to be taken, similar to taking 

the FT of any stationary signal. 

The next step, would be shifting this window to a new location, multiplying with the signal, 

and taking the FT of the product. This procedure is followed, until the end of the signal is 

reached by shifting the window. Equation 3.3 formulates the STFT transform function [10]. 

( ) ( ) -J2́ ft

t

STFT t,f  = x(t) . w* t-t'  × e  dtè øê úñ     (3.3) 

However, STFT is not capable for achieving multi-class resolution, since the window function 

is fixed in width throughout the whole transform process; therefore the wavelet transforms 

were developed to overcome this problem. 

3.1.3 Wavelet Transforms 

In analogy to sinusoidal signals which are the constituting signals to the Fourier Transform 

(FT), there are the wavelets which are the constituting signals to the Wavelet Transform (WT). 

Wavelets are the foundation of a powerful new approach to the signal processing and analysis 

called the multi-resolution theory which STFT is not capable of achieving. 

Some features within a signal might go undetected at one resolution however, they might be 

easily detected at another, and therefore this theory is concerned with the representation and 

analysis of signals at more than one resolution. 
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3.1.3.1 Continuous wavelet Transform 

The Continuous Wavelet Transform (CWT) was developed as an alternative approach to the 

STFT to overcome the resolution problem. The wavelet analysis is done in similar way to the 

STFT, in the sense that the signal is multiplied with a function similar to the window function 

in STFT, and the transform is computed separately for different segments of the time-domain 

signal. However, there are two main differences between STFT and CWT [11]. 

1- The FT of the windowed signals are not taken. 

2- The width of the window, the most significant characteristic of the WT, is changed as 

the transform is computed for every single spectral component. 

The CWT is defined as formulated in Equation 3.4, where Ű and S are the translation and the 

scaling parameters, respectively. ()tY  is the transforming function, also called as the mother 

wavelet. 

Ɋ *

x

1 t - Ű
CWT (Ű , S) = x(t) Ɋ dt

S S 

å õ
æ ö
ç ÷

ñ     (3.4) 

Wavelets differ from Fourier Transform in that wavelets allow us to inspect a signal in both 

space or time domain and frequency domain at the same time, which the FT lacks, and they 

process the signal with different resolutions on the contrary STFT is a single resolution 

analysis. Figure 3.2 illustrates the frequency time characteristics in WT compared to STFT and 

FT techniques [11]. 

 

Figure 3.2: Comparison between Different Techniques [11] 
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The parameter scale in the wavelet analysis is similar to the scale used in maps. As in the case 

of maps, high scales correspond to a non-detailed global view, and low scales correspond to a 

detailed view. Similarly, in terms of frequency, low frequencies (high scales) correspond to a 

global information of a signal (that usually spans the entire signal), whereas high frequencies 

(low scales) correspond to a detailed information of a hidden pattern in the signal that usually 

lasts a relatively short time [11]. 

Scaling, as a mathematical operation, either dilates or compresses a signal. Larger scales 

correspond to dilated (or stretched out) signals and small scales correspond to compressed 

signals. As an example for CWT, Figure 3.3 illustrates an input waveform, while Figure 3.4 

demonstrates how the CWT extracts the frequency component along with their time allocation. 

 

Figure 3.3: Dual Frequency Sinusoidal Waveform 

 

Figure 3.4: CWT of the Dual Frequency Sinusoidal Waveform 

a (scale) 
b (sec) 
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3.1.3.2 Discrete wavelet Transform (DWT)  

Filters of different cutoff frequencies are used to analyze the signal ï in its discrete form ï at 

different scales. The signal is passed through a series of High Pass Filters (HPF) and Low Pass 

Filters (LPF) to analyze both the high frequencies, and the low frequencies of a certain signal 

[12]. 

The procedure starts by passing the desired signal through a half band digital low pass filter 

with impulse response h[n]. Filtering a signal corresponds to the mathematical operation of 

convolution of the signal with the impulse response of the filter. The convolution operation in 

discrete time is defined as in equation 3.5 [11]: 

[] [] [] [ ]
k=-

x n  * h n  = x k  . h n - k
¤

¤

ä               (3.5) 

After passing the signal through a half band LPF, half of the samples can be eliminated 

according to the Nyquist rule. Simply discarding every other sample will subsample the signal 

by two, and the signal will then have half the number of points. The scale of the signal is now 

doubled [12].  

The process of filtering the lower half of the band removes the high frequency information, but 

leaves the scale unchanged. Only the subsampling process changes the scale. Resolution, on 

the other hand, is related to the amount of information in the signal, and therefore, it is affected 

by the filtering operations [12].  

Half band low pass filtering removes half of the frequencies, which can be interpreted as losing 

half of the information which reduces the resolution by half; however, the subsampling 

operation does not affect the resolution, since removing half of the spectral components from 

the signal makes half the number of samples redundant anyway. Half the samples can be 

discarded without any loss of information [12].  

In summary, the low pass filtering halves the resolution, but leaves the scale unchanged. The 

signal is then subsampled by 2 since half of the number of samples are redundant. This doubles 

the scale. This procedure can mathematically be expressed as in equations 3.6 and 3.7 where 

h(n) and g(n) represents the low pass and high pass filter coefficients respectively [12]. 
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[] [ ] [ ]high

n

Y k  = x  n  . g  2k - n ä              (3.6) 

[] [ ] [ ] low

n

Y k  = x  n  . h  2k - n ä              (3.7) 

The DWT analyzes the signal at different frequency bands with different resolutions by 

decomposing the signal into a coarse approximation and detail information. DWT employs two 

sets of functions, called scaling functions and wavelet functions, which are associated with low 

pass and high pass filters, respectively. The decomposition of the signal into different 

frequency bands is simply obtained by successive high pass and low pass filtering of the time 

domain signal. The original signal x[n] is first passed through a half band high pass filter g[n] 

and a low pass filter h[n] [12].  

After the filtering, half of the samples can be eliminated. The signal can therefore be 

subsampled by 2, simply by discarding every other sample. This constitutes one level of 

decomposition. If more than one level of decomposition is needed the half band high pass and 

low pass filters are reused in order to further decompose the signal. Figure 3.5 illustrates the 

DWT multi-level decomposition of a signal x(n), where the low pass output at every level 

represents the details, and the final level high pass output represents the approximation [12]. 

 

Figure 3.5: Discrete Wavelet Transform Decomposition by Filter Banks [12] 
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As an example to the DWT analysis. The wave form illustrated in Figure 3.6, with added noise, 

is processed using the DWT analysis by applying 4 level of decomposition filters. The filter 

responses and the output of each stage of decomposition is shown in Figure 3.7. As we can see 

the higher frequency components, noise, are separated from the lower frequency component 

which is the original signal. 

 

Figure 3.6: Input Waveform for DWT 

 

Figure 3.7: Signals Generated by the Analysis Filters 
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