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Chapter 1

Introduction

1.1 Introduction

Research in Biomedical engineering and its applicatiosbd®n rapidly growing over the past

few years, as medical treatment is becoming more dependent on the technological advances.
The main purposes of this field is to provide humans with better, healthier and more
comfortable medical care, which reflects b society by leading to a better productive life

for its citizens.

Research in biomedical engineering is showing promising new treatments for illnesses and
disorders that medical science on its own cannot provide an appropriate medication. Currently
many leading universities are focusing on biomedical research for itatanpe to human

health and lifestyle.
1.2 Narcolepsy Definition, Symptoms, and Diagnosis

Narcolepsy is a chronic neurological disorder of sleep regulation that affects the sleep cycle. It
is characterized by uncontrollable recurring episodes of daytimarssspThe episodes may
last from few minutes up to a complete hour and it is accompanied by intrusion of the dreaming

state- known as the Rapid Eye Movement (REMi)to the waking statfl].

Its most common symptoms include Excessive Daytime SleefditPS), loss of muscle tone
(Cataplexy), distorted perceptions (Hallucinations), and the inability to move or to talk (Sleep
Paralysis). Referring to a survey carried by the UK Narcolepsy patient association based to the
Beck Depression Inventory (BDI), geees of depression are common among narcoleptic
patients which is an expected evolution to a series of social, educational, psychological, and
financial difficulties experienced by a narcoleptic patient. Furthermore narcoleptic individuals

are at an eleated risk for motor vehicle, occupational and household accidents.

Origin and causes of Narcolepsy are still unclear, but the general consensus is the patient
genetics accompanied by an environmental trigger of somé samis, for exampléd may

affectthe brain chemicals and causes Narcolepsy.



Diagnosis of Narcolepsy commonly performed at a sleep clinic, by recording the brain

activities of the patients during his sleep, followed by a visual scoring of the recorded data.
1.3 Thesis Objective and Motivation:

Approximately 3 million people worlavide have Narcolepsy. The prevalence of Narcolepsy

is approximately 0.05% of the population, however it often goes unrecognized. Although
Narcolepsy is as common as many other conditions (such as Parkinson's Diddakpler
Sclerosis), fewer people know about Narcolepsy, and it can sometimes be mistaken for other
medical conditions such as depression, psychiatric illness, epilepsy, chronic fatigue syndrome,

or a sideeffect of medication.

Narcoleptic patients arevahys at high risks due to sudden sleep episodes or cataplexy. For
example if the patient is driving a car while an episode occurs, this might lead to a severe
accident. Life style changes are required, such as ensuring a regular sleep schedule, avoiding
periods of sleep deprivation, scheduling several short naps along the day usually before driving,
avoiding occupations that involve excessive driving and operating heavy machinery, avoiding

caffeine and alcohol.

Narcolepsy is diagnosed using polysomnografyG) according to the standard written in
1968 P] which requires the patient to spend the night at a sleep clinic in order to record his
brain activity for a later analysis that would be performed by a sleep physician. Draw backs for
this classical metid are:

1- Long hours spent by the patient at sleep clinic.

2- Unfamiliarity of the clinic to the patient may leads teaiccurate results.

3- Scoring the sleep stages and the classification of the disorder are made by the human

eye which might lead to taccurateesults.

4- Realtime analysis is impossible with the classical scoring method.

The scope of this thesis is to design and implement a high speddnealystem that predicts
narcoleptic episodes. The proposed system design consists of a memory for gia@ log
feature extraction block, the classifier block, and finally a user interface. The system is
designed to be small enough for portability, fast enough fortiraal computation, simple

enough for ease of useusing the least possible number channelhile maintaining the



classifier high accuracy rate, and most importantly reducing power consumption to the

minimum.

Since Narcolepsy puts the patient in danger, atne& classifier helps narcoleptic patients live

a better and more productive life iasvould give a good prediction before the occurrence of

an episode. These predictions will allow the patient to take proper precautions when needed to
prevent accidents. It will also help improving the accuracy rate over the conventional
classification apatient will sleep in his own familiar environment. The physician will be able

to review the data logged at any time for the purpose of adjusting medications.

1.4 Thesis Outline

This thesis is organized as follows:

Chapter 2 provides all the necessary medical background and the literature review related to
the Narcolepsy disorder. A detailed discussion of the medical terminology, definitions and its
standards igresented in details. Furthermore previous work in this field of research is

discussed and summarized.

Chapter 3 discusses in details the theory of wavelet transforms and the support vector
machines, athe system designed in this thesis uses these discrete wavelet transform for the

feature extractionrad the support vector machines for its classification.

Chapter 4 presents the full details of the proposed design andsdiftevare simulation
conducted foeach liilding block constructing this design.

Chapter 5 presents the full implementation of the design proposed in chapter 4, along with all
theRTL and postroutingsimulations conducted to test this system functionality.

Chapter 6 summarizes this thesis, discussing the results found in chapter 4, and concluding
some recommendations for future work to improve the developed system. And finally the work

is terminated by &st of references.



Chapter 2

Medical Background and Literature Review

In this chapter, both the medical background and all the recently published studies related to
the scope of this thesis, are introddcThe medical background dealinigh the conventional
methods of narcolepsy treatmergsliscussed in the next sectiavhile in the second section

a discussion of the recently developed assistive devices is discussed.

2.1 Classical Narcolepsy Classification; Standards of Sleep Stage Recording

Narcolepsy clasgifation is mainly based on polysomnography, otherwise called as sleep study.
It's a process at which a complete recording of the brain waves is acquired while the patient is
asleep during the night. These recordings consist of Electroencephalography (EEG),
Electrooculography (EOG), and ElectromyografBl G) waves followed by a visual scoring

of these recording byhysician[2].

Since 1968 visual sleep stage scoring has been performed according to the guidelines
established by the committee led by AllaedRtschaffen and Anthony Kal€ékhe aim othese
guidelinesof t en cHWaheadl tthe Rechtschaffen and Kal e
comparability of results from different laborator[2s.

The manuals based on the psychophysiological knowledge of the sleep process at that time
providing the minimum requirements for polysomnographic sleep studies of adult humans. It
also provides the classification of sleep stages, standardized terminology anddsfofttie

different parameters obtained frateeprecordings.

Since hese guidelines were designed for paper recordinggcontains definitions for filters,
gain, paper speed, pen deflection, and the number of chaewcelsled etc. Some of the
requrements and instructions are no longer necessary during recording with the increasing use

of digital polysomnograph in which the parameters can be adjusted afterwards.

In the followingsubsections, a brief introduction of the human sleep cycle wilhtseduced,
followed by a more detailed explanation of the different alertness stages that occurs in a normal

cycle, and finally the electrode placement and signal considerations for accurate classification.



2.1.1 Sleep Study

Nocturnal Polysomnography (PSG) alstown as sleep study, is a comprehensive recording
of the biephysiological changes that occur during sleep. It is usually performed at night, when
most people sleep. The PSG monitors many body functions including brain (EEG), eye
movements (EOG), muschtivity or skeletal muscle activation (EMG) and heart rhythm
(ECG) during sleep.

The human sleep cycle consists of different states of alertness known as the sleep stages. Sleep
stages are divided into two groydRapid Eye Movement (REM) and None RapigleE
Movement (NREM). The REM stage is also known as the state at which dreams occur and it
is characterized by a visible movement in the eyes. The NREM stage consists of 4 stages that

describe the transition from wefulness to the dreaming state [2].

In anormal sleep cycle, first stage occurs for approximately 10 minutes, followed by the second
stage for about 30 minutes, stage 3 is usually short and followed by stage 4 that can last up to
40 minutes, finally REM state occurs from 5 to 20 minutes. Ip&ay 8 hours sleep, four to

five complete sleep cycles occur where each cycle lasts longer as its respective REM stage

extends. The standard sleep cycle can be seen in the illustraimud2.1.

The sleep stages are scored accordirRit8 manualvrittenin 1968[2].

Awake

REM

Stage 1

Stage 2

Stage 3

Stage 4

Hours 0 1 2 3 4 5 6 7 8

Figure2.1: Standard Human Sleep Cycle



2.1.2 Alertness Stages:

In this section, a full and detailed explanation of the different stages in human sleep cycle along
with their corresponding signal characteristics and descriptions is expl@imetiuman state
of mind can be determined with the following EEG bands asis€kable2.1

Table2.1: EEG Bands and Corresponding State of Mind

EEG Band Frequency RangeState ofmind

Beta 147 30 Hz Associated with anxiety and depression or use of
sedatives.
Highly alert and focused

Spindles 127 14 Hz Represents periods where the brain is inhibiting
processing to keep the sleeper in a tranquil state

Alpha 81 13 Hz Presentvhen awake but eyes closed (relaxed but aler

Disappear when eyes are open or with mental
concentration.

Theta 47 7 Hz Drowsiness or Slow brain activity

Delta 0.57 3.5 Hz Deep Sleep state

Woke-up Stage (Stage W)s characterized by low voltage (103 0 ¢ V) and mixed

frequencies, mainly consists of alpha actiy&j.

Stage 1lis defined by a relatively low voltage, mixed frequency EEG with a prominence of
activity in the 27 Hz range. Stage 1 occurs most ofitethe transition from wakefulness to

the other sleep stages following body movement during sleep. Stage 1 tends to be relatively
short during nocturnal sleep, ranging from 1 to 7 minutes. The highest voltage w7 tHe 2

activity is about 567 5 ¢ V endsrtadocctr in irregularly spaced bursts mostly during the
latter portions of the stage. Vertex sharp waves may occur; their amplitude can reach up to 200
eV. Slow eye movement may be present during
defined K complexesa sharp negative wave followed by a slower positive compoasedt,

sleep spindles are absent and the epoch is characterized with alpha activity combined with

mixed frequency EEG and the amount of alpha activity is less than 50% of thg2jpoch

Stage 4s characterized by wave patterns, sleep spindles, K complex#seaabsence of slow
waves EEGTraces of low voltage activity in the frequency range eld2Hz may begin to
appear in stage 1 as the transition to stage 2 approached] batybe characterized as stage

2 when the rhythmic bursts are clearly visible for at least 0.5 seconds. If the time between two



succeeding occurrences of sleep spindles or K complexes is lower than 3 minutes, this interval

is scored as stage 2 otheravisis scored as stagd?].

Stage3d s characterized by sl ow EEG waves sl owe|
In order to score a stage 3, the previously identified characteristics must be present for 20 to

50% of an epoch. Sleep spindles andokhplexes may occur during staggp.

Stage 4is similar to Stage 3 but having the slow waves with 2 Hz and slower with amplitudes

above 75 eV appearing 2n more than 50% of an

Rapi d Eye Mo v stagdasrstorediviiénithe patient's eye lgve rapidly which
usually indicated a dreaming state. It is correlated with a set of psychological activities such as

change in heart rate and blood pres$2fe

Table2.2 summarizes the sleep stage scoring crif@jiawhile Figure2.2 illustrates the EEG

recording for the different states from wake until REM sleep.

Table2.2: Outline of Sleep Scoring Criteria According to Standard Maf8jal

Stage/State EEG EOG EMG
Relaxed WakefulnesyEyes closed: Rhythmic alpha-18 Hz Voluntary control: REMs Tonic activity, relativel
Prominent in occipital. high;
Eyes open: relatively low voltage, mi» voluntary movement
frequency when drowsy SEMs
NREM
Stage 1 Relatively low voltage, mixeftequency SEMs Tonic activity, low level
May be theta & Hz activity with greate
amplitude.
Vertex Sharp Waves
Synchronous higivoltage theta bursts
children
Stage 2 Background: relatively low voltac Occasionally SEMs near sle Tonic activity, low level
mixed frequency ) onset
Sleep Spindles: (t24Hz) O 0.
K complexes: O O0.
on Ks; Ks maximal in vertex; spontane
or in response to sound.
Stage 3 O 20 % O 50% high None, picks up EEG Tonic Activity, low level
sl ow f r eq He;nmaximal( ir
frontal
Stage 4 > 50% high amplitude slow frequency None, picks up EEG Tonic Activity, low level
Relatively low voltage, mixed frequenc Phasic REMs Tonic Suppression; pha
REM Sawtooth waves twitches
Theta activity; slow alpha
Movement Time Obscured Obscured Very high activity
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Figure2.2: Different Alertness Levels theEEG Spectrum

2.1.3 Polysomnography Waves and Th&erivations:

This section discusses the various signals recorded during a standard polysomnography along
with their electrode placement and derivations.

a) Electroencephalogram(EEG)

For a reliable recording of EEG, it is important to carefully choose the electrode placement
according to the 220 system represented figure2.3. A grid is placed over the skull and
points of intersections denote electrode placement locations. The name of the system derives
from measurements made at intervals of 10% or 20% of the total distance between landmarks.
The four landmarks of the system atasion, Inion, and left and right Resiricular Points.

These measurements are made for each patient specifgally

The standard manual recommends referential recording of one EEG channel either C3 or C4,
referenced to an indifferent auricularlyaped electrode on the contederal mastoid or ear

lobe: hence C3/A2 or C4/A2, 3,4]. Sleep stage scoring doesn't require measurement of focal
EEG activity or regional comparisons. Rather, all of the EEG waveforms used to distinguish
sleep stages areell visualized at C3 or C4 with the relatively large irtdzctrode distance
afforded by a contrtateral reference. Vertex sharp waves and K complexes which are maximal

over the vertex, are clearly evident at C3 and C4; high voltage slow waves chstiactéri



deep NREM sleep are seen maaliynin frontal regions yet searearly on catral derivations.
Alpha rhythmcan be characterized centrally in most human bethgsefore, only C3/A2 or

C4/Aldifferential electrode issed in standard assessment of sleep sfagés4].

Preauricular
Point

Figure2.3: 10-20 EEG Electrode Placement System

b) Electrooculogram (EOG)

There are two primary reasons to record eye movement activity during Bleefirst reason

is to record the cardinal sigh of REM sleep which is an essential sleep stage scoring criterion,
and the second one is that the onset of sleep in most human beings is accompanied by slow
rolling eye movement. Although these slow eye movas§ESEMS) are not essential to sleep

staging, they often provide very useful informatj8h

Figure2.4: EOG electrode Placement System
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The EOG recordings are based on the small elgdtentialdifference from the front to the

back of the eye. Movement of the eye can be measured from electrodes placed beside the eyes.
An electrode near to the corena will register a positive potential while an electrode near to the
retina will record a negative pential. As the eye moves, the positions of the corena and retina

change relative to the fixed position of the electrodes which will register a change in potential.

As recommended in the standard manual, continuous referential recording of two EOG leads
must be registered. Using either (ROC/A1, LOC/Al) or (ROC/AL, LOC/A2) electrodese

ROC and LOC placement are illustratedrigure2.4. In the seond electrode placement the
contralateral references maximize the signal amplitude for both EOGs, conjugate eye
movement will register as cwff-phase; while EEG activity reflected in the EOG channels will

be seen as iphase deflectiong, 3].
c) Electromyogram (EMG)

In polysomnography recording the EMG is recorded from the muscles beneath tlaes chin
illustrated inFigure2.5 and used as a terion for staging REM sleep. The electrodes are placed
beneath the chin overlying the mentalis/submentalis muscles. The EMG is recorded bipolarly
where the electrode pair selected should produce the record of highest[Gu8lity

{~ Buccinator
muscle

Mentalis muscle

Figure2.5: Facial Muscles

2.1.4 General Considerations for Recording Sleep

The minimum recommended requirement for sleep staging is four channels; one channel EEG,
two channels EOG, and one channel EMG recordings are sufficient for correctly scoring sleep.
FromTable2.3 [3], each channel and its recommended electrodes are summarized.
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Table2.3: Montage for Monitoring Sleep Statgy

Channel Electrode placement
EEG C3/A2 orC4/A1
EOG ROC/Al and LOC/A1
EMG Mentalis/Submentalis

2.2 Review on Narcolepsy Assistive Devices and Classification Algorithms

In 2007, a thesis titld Aclassification of sleep staging for Narcolepsy assistive dejijevas

presented by Shuo Zhang@his researchstudied three different techniques for the sleep
classificationLi near Vector Quantization ALVQO, Prob
Feed For war d NeNNKawhile N leatdwanerinkplemefit&tibn was built for the

most suitable tdmique the FFNN as it provided the highest accuratgble2.4 summarizes

the results of these classification methfi]s

Table2.4: Classification Methods Accurag§]

Classification Methods AccuracyResults
1- Linear Vector Quantization 70%
2- Probabilistic Neural Networks 79%
3- Feed Forward Neural Network: 85%

For the implementan, a micrecontroller wasused to control the data flow, whillbe DSP
kit ATMS320C67110 was used to i mplement t h
Continuous wavelet transform with Debauchee mother wavelet was used for the feature

extraction[5, 6].

In 2008 a paper was published by S. R. I. Gabran. This papéedable same classification
techniques as in the previous research. The results were similar to those summarized in
Table2.4 [7].

In 2009 apaperwas published by S. R. I. Gabran at the IEEE EMBS annual confdi@nce

This papercould be considered as continuation to the previously published Ipafee same

author. In thisresearcha new techniquebased on th&uppor t Vector mac hi
algorithmis introduced and compared to the previous classification Techniques. SVM was
found to provide a better accuracy at 96 %.

A prototype implementation was developesing the ARB1831 single board computer with
an Intel Pentium Mbile processor. The single electrode chosen for this prototype was the EEG

11



C3/A2 channel, while CWT with Debauchee mother wavelet were implemented for the feature

extraction[8].

However preious efforts developed similar devices to our thesis, these products were not
hardware optimized for performance, portability, power consumption, antimeabperation.

The scope of our research is to design and implement a hardware optimized falepagrc
assistive device working with the SVM classifiers for best performance, yet hardware

implemented using VHDL unlikéhe general purpose processor device used|.in [
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Chapter 3

Wavelet Transforms and Support Vector Machines

The system designed in this thegses the wavelet transforms for the feature extraction and
the support vector machines for classification. In this chapter a detailed explanation of the

theory of both wavelets and support vector machines is elaborated.
3.1Introduction to Wavelet Transforms

All the signals in practice, are time daim signals in their raw formathis representation is
not always the best representation of the signal. In many cases, thesefaiihformation is
hidden in the frequency components of that sigheéquency analysis of a signal can be
processed using different kind of transforrgach of these techniques has its own area of
application, with advantages and disadvantages that are discussed in this[@hapter

3.1.1 Fourier Transform

Fourier Transform (FT) is a method used to represent any given waveform by a series of
sinusoidal signals. If the FT of a signal in time domain is taken, the freqgaemgijtude
representation of that signal is obtained, resulting in a plot with one erig the frequency

while the other is the amplitude. Thgkt, asexamplen Figure3.1, tells us how much of each
frequency exists in the given wavefo[d].

The FT is a reversible transform, that is, it allows to go back and forward between the raw and
transformed signals. Keever, only either of them is available at any given time, that is, no
frequency information is available in the tirdemain signal, and no time information is
available in the Fourier transformed signal. Equations 3.1 and 3.2 formulates the transformation

process from time domain to frequency domain and from frequency domain to time domain

respectively{ 10].
X(f) = ;“Y(t) x g2 'dt (3.1)
x(t) = uﬁX(f) x & df (3.2)
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Waveform A : Time Domain

SEE

=1 0

Waveform B: Time Domain x 10

ﬂﬂﬂﬂ WH

-1 0

Frequency Domain of Waveforms A & B x 10

Figure3.1: Time-Frequency Analysis using FT

Figure3.lillustrates the disadvantage of FT, where two completely different waveforms might
yield the same frequency domain response if they obtain the same frequency components
regardless of their time of occurrenci certain applications knowing the frequency
components of a given wavefolisinot enough, the time of occurrence of each frequency is
crucial to the analysis of this signal. FT will na bseful in such applications, therefore,

another method of processing is needed.
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3.1.2 Short Time Fourier Transform

S nce FT doe s-std@tionarysignals, afdifferent technique had to be implemented

in order to process nestationary waveforms. The Short Time Fourier Transform (STFT)
assumes that some portion of the given waveform is stationary on its owBITHMR

the signal is divided into small segments, where these segments of the signal can be assumed
to be stationary. For this purpose a window

must be equal to the segment of the signal whegstat®oneryis valid.

This window function is first locateal the very beginning of the signal. The window function
and the signal are then multiplied. If the window is a rectangle, with amplitude "1", then the
product will be equal to th&ignal itself. The FT of this produistto be takersimilar totaking

the FT of anystationarysignal.

The next step, would be shifting this window to a new location, multiplying with the signal,
and taking the FT of the product. This proceduréi®wed, until the end of the signal is
reached by shifting the window. Equation 3.3 formulates the STFT transform fufid@jon

STFT(tf) =fax@®) . w{tt) g« & ''d (3.3)

However, STFT is not capable for achieving maléiss resolution, since the winddwnction
is fixed in width throughout the whole transform process; therefore the wavelet transforms
were developed to overcome this problem.

3.1.3 Wavelet Transforms

In analogy to sinusoidal signals which are the constituting signals to the Fourier Transform
(FT), there are the wavelets which are the constituting signals to the Wavelet Transform (WT).
Wavelets are the foundation of a powerful new approach to the signal processing and analysis

called the multresolution theory which STFT is not capable of acimgvi

Some features within a signal might go undetected at one resolution however, they might be
easily detected at another, and therefore this theory is concerned with the representation and

analysis of signals at more than one resolution.
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3.1.3.1Continuous wavelet Transform

The Continuous Wavelet Transform (CWT) was developed as an alternative approach to the
STFT to overcome the resolution problem. The wavelet analysis is done in similar way to the
STFT, in the sense that the signal is multiplied with &tion similar to the window function
in STFT, and the transform is computed separately for different segments of tlutmas
signal. However, there are two main differences between STFT and[CM\VT

1- The FT of the windowed signals are not taken.

2- The wdth of the window, the most significant characteristic of the WT, is changed as

the transform is computed for every single spectral component.

The CWT is defined as formulated in Equation 3.4, wHéamd S ee the translation aritie
scalingparameters, respectively. (t) is the transforming function, also called as the mother
wavelet.

CwTiU A= (3.4)

| S|

Ce] 5)0

Kl
=

GO

Wavelets differ from Fourier Transform in that wavelets allsmo inspect a signal in both
space or time domain and frequency domain at the same time, which the FTafatkisey
process the signal with different resolutions on the contrary STFT is a single resolution
analysisFigure3.2 illustrates the frequency time characteristics in WT compar8d Ea and

FT techniquegl1l].
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Figure3.2: Comparison between Differemechnique$11]
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The parameter scale in the wavelet analysis is similar to the scale used in maps. As in the case
of maps, high scales correspond to a-detailed global view, and low scales i@spond to a
detailed view. Similarly, in terms of frequency, low frequencies (high scales) correspond to a
global information of a signal (that usually spans the entire signal), whereas high frequencies
(low scales) correspond to a detailed informatioa bfdden pattern in the signal that usually

lasts a relatively short tim@a1].

Scaling, as a mathematical operation, either dilates or compresses a signal. Larger scales
correspond to dilated (or stretched out) signals and small scales correspamiptessed
signals.As an example for CWTFigure 3.3 illustrates an input waveform, whileigure 3.4

demonstratesow the CWT extracts the frequency component along with their time allocation.

) 0 200 400 GO0 800 1000

Figure3.3: Dual Frequency Sinusoidal Waveform

CWT

e 1 a (scale)

Figure3.4: CWT of the Dual Frequency Sinusoidal Waveform
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3.1.3.2Discrete wavelet Transform(DWT)

Filters of different cutoff frequencies are used to analyze the signalts discrete formi at

different scales. The signal is passed through a series of High Pass Filters (HPF) and Low Pass
Filters (LPF) to analyze both the high frequencies, and the low frequencies of a certain signal
[12].

The procedure starts by pasgithe desired signal through a half band digital low pass filter
with impulse response h[n]. Filtering a signal corresponds to the mathematical operation of
convolution of the signal with the impulse response of the filter. The convolution operation in
discrete time is defined as in equatios [3.1]:

(] #h[n] =& ¥ - n-} ©9

After passing the signal through a half bdo@F, half of the samples can be eliminated
according to th&lyquistrule. Simply discarding every other sample vgillbsampl¢he signal

by two, and the signal will then have half the number of points. The scale of the signal is now
doubled[12].

The process diltering the lower half of the bangtmoves the high frequency information, but
leaves the scale unchang€hly thesubsamplingorocess changes the scale. Resolution, on
the other hand, is related to the amount of information in the signal, and therefore, it is affected

by the filtering operationgl2].

Half band low pass filtering removes half of the frequesiovhich can be interpretedlasing

half of the informationwhich reduceghe resolutionby half; however, thesubsampling
operation does not affect the resolution, since removing half of the spectral components from
the signal makes half the number sefmples redundant anyway. Half the samples can be

discarded without any loss of informatifi®].

In summary, the low pass filtering halves the resolution, but leaves the scale unchanged. The
signal is thersubsampletdy 2 since half of theaumber of saples areedundant. This doubles
the scale. This procedurercenathematically be expressed as in equatBo®and 3.7where

h(n) and g(n) represents the low pass and high pass filter coefficients resptfijvely
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Yign[K] = a x[n] .d 2k-n (3.6)

Y ou [K] :%x[ n] .H 2k-nr (3.7)

The DWT analyzes the signal at different frequency bands with different resolutions by
decomposing the signal into a coarse approximation and detail information. DWT employs two
sets of functions, calledaling functions and wavelet functions, which are associated with low
pass and high pass filters, respectively. The decomposition of the signal into different
frequency bands is simply obtained by successive high pass and low pass filtering of the time
domain signal. The original signal x[n] is first passed through a half band high pass filter g[n]

and a low pass filter h[]L2].

After the filtering, half of the samples can be eliminated. The signal can therefore be
subsampled by 2, simply by discardingeey other sample. This constitutes one level of
decomposition. If more than one level of decomposition is needed the half band high pass and
low pass filters are reused in order to further decompose the dtggale 3.5 illustrates the

DWT multi-level decomposition of a signa(n), where the low pass output at every level

represents the details, and the final level high pass output represents the apjoroki2jat

x[n] f=0~=n
g[n] h[n]
f=n/2 ~ 7 ‘ é =0 ~ 7/2
Level 1
DWT coefficients g[n] h[n]

f=/4 ~ /2 ; é =0 ~ w/4

Level 2

DWT coefficients g[n] h[n]

f=rt/8 ~ /4 % % f=0 ~ /8
Level 3

DWT coefficients

Figure3.5: Discrete Wavelet Transform Decomposition by Filter B4a@$
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As an example to the DWT analysis. The wave form illustrat&tgure 3.6, with added noise,

is processed using the DWT analysis by applying 4 level of decomposition filters. The filter
responses and the output of each stage of decomposition is shiéiguregB.7. As we can see

the higher frequency components, noise, are separated from the lower frequency component
which is the original signal.

R
Lo P
/ \_/_\\\ / \
o S~ /1/\//‘\. .
A N
e # N

Amplitude (volt)
T

Time (sec)

Figure3.6: Input Waveform for DWT

Figure3.7: Signals Generated by the Analysis Filters
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