Robotics

Lecture 12

Control

Emam Fathy

Department of Electrical and Control Engineering

email: emfmz@aast.edu

http://www.aast.edu/cv.php?disp_unit=346&ser=68525

- Using inverse kinematics, we can calculate the joint kinematics for a desired geometric path of the end-effector of a robot.
- Substitution of the joint kinematics in equations of motion provides the *actuator commands*.
- Applying the commands will move the endeffector of the robot on the desired path *ideally*.
- However, because of perturbations and non-modeled phenomena, the robot will not follow the desired path.
- The techniques that minimize or remove the difference are called the *control techniques*.

- There are many control techniques and methodologies that can be applied to the control of manipulators.
- In this lecture we consider the simplest type of control strategy, namely, independent joint control.
- In this type of control each axis of the manipulator is controlled as a single input/single-output (SISO) system.
- Any coupling effects due to the motion of the other links is treated as a disturbance.

Independent Joint Control

 We will consider the dynamics of permanent magnet DCmotors, as these are common for use in present-day robots.

Circuit diagram for armature controlled DC motor

Block diagram for a DC motor system

V = armature voltage

L = armature inductance

R = armature resistance

 V_b = back emf

 i_a = armature current

 θ_m = rotor position (radians)

 τ_m = generated torque

 τ_{ℓ} = load torque

 ϕ = magnetic flux due to stator

V(s) to $\Theta_m(s)$ is then given by (with $\tau_\ell = 0$)

$$\frac{\Theta_m(s)}{V(s)} = \frac{K_m}{s[(Ls+R)(J_ms+B_m)+K_bK_m]}.$$

The transfer function from the load torque τ_{ℓ}/r to Θ_m is given by (with V=0)

$$\frac{\Theta_m(s)}{\tau_{\ell}(s)} = \frac{-(Ls+R)}{s[(Ls+R)(J_ms+B_m)+K_bK_m]}.$$

- it is assumed that the "electrical time constant" L/R is much smaller than the "mechanical time constant" J_m/B_m .
- This is a reasonable assumption for many electromechanical systems and leads to a reduced order model of the actuator dynamics.

$$\frac{\Theta_m(s)}{V(s)} = \frac{K_m/R}{s(J_m s + B_m + K_b K_m/R)} \quad \text{with } \tau_l = 0$$

$$\frac{\Theta_m(s)}{\tau_{\ell}(s)} = -\frac{1}{s(J_m(s) + B_m + K_b K_m/R)} \quad \text{with } V = 0$$

The block diagram corresponding to the reduced order system is:

Block diagram for reduced order system

PD Compensator

The gains K_{D} and K_{p} can be found from the following characteristic equation

$$s^{2} + \frac{(B_{eff} + KK_{D})}{J_{eff}}s + \frac{KK_{p}}{J_{eff}} = s^{2} + 2\zeta\omega s + \omega^{2}$$

$$K_{p} = \frac{\omega^{2}J_{eff}}{\kappa}, \quad K_{D} = \frac{2\zeta\omega J_{eff} - B_{eff}}{\kappa}.$$

Take ζ = 1 so that the response is critically damped. This produces the fastest non-oscillatory response. In this context ω determines the speed of response.

Example

 Consider the second order system of the following figure.

- The closed loop characteristic polynomial is $p(s) = s^2 + (1 + KD)s + Kp$
- Suppose θ^d = 10 and there is no disturbance (d = 0). With ζ = 1,

- Suppose θ^d = 10 and there is no disturbance (d = 0). With ζ = 1,
- the required PD gains for various values of ω are shown in as:

ω	K_P	K_D
4	16	7
8	64	15
12	144	23

■ The corresponding step responses are:

If a constant disturbance d = 40, the corresponding step responses are:

End of Lec