

Arab Academy for Science & Technology & Maritime Transport (AASTMT – Cairo Branch) College of Engineering & technology **Electronics & Communication Engineering Department** : Solid State Electronics : EC210

Course **Course Code**

Sheet #1

Physical Constants:

Charge of electron (e) = 1.6×10^{-19} C Mass of proton $(m_p) = 1.672 \times 10^{-27}$ kg Plank's constant $(h) = 6.63 \times 10^{-34}$ J.s Mass of electron $(m_e) = 9.1 \times 10^{-31}$ kg Avogadro's number (N_A) = 6.02x10²³ atoms/mole Speed of light (C) = $3x10^8$ m/s

Put (T) for the true statement or (F) for the false statement:

- 1. The material that has crystalline subsections which are disoriented relative to each other is an amorphous material.
- 2. The bond that occurs between atoms due to the sharing of valence electrons between the atoms is a metallic bond.
- 3. In Sodium Chloride (NaCl), atoms are bonded by an ionic bond.
- 4. In Silicon, atoms are bonded by a metallic bond.
- 5. In Copper, atoms are bonded by a covalent bond.

Choose the correct answer justifying your choice:

1.	. The bond that occurs between different atoms due to the transfer of valence electrons from one atom another is abond.							
	(a) ionic	(b) covalent	(c) metallic	(d) molecular				
2.	The bond that occur between atoms due to electrostatic force between free electrons and positive ions i abond.							
	(a) ionic	(b) covalent	(c) metallic	(d) molecular				
3. In semiconductor materials, atoms are usually bonded by abond.								
	(a) ionic	(b) covalent	(c) metallic	(d) molecular				
4. The material that has arranged atoms in 3D array is material.								
	(a) crystalline	(b) poly-crystalline	(c) amorphous	(d) non-crystalline				
5.	5. The material that has no recognizable long-range order is a material.							
	(a) crystalline	(b) poly-crystalline	(c) semiconductor	(d) non-crystalline				
6. In a simple cubic structure, there are atoms per unit cell.								
	(a) 1	(b) 2	(c) 4	(d) 8				
7. In a body-centered cubic structure, there are atoms per unit cell.								
	(a) 1	(b) 2 (c)	4 (d) 8	-				
8. In a face-centered cubic structure, there are atoms per unit cell.								
	(a) 1	(b) 2 (c)	4 (d) 8					

9. In a diamond structure (a) 1	cture, there are (b) 2	atoms per (c) 4	unit cell. (d) 8						
 10. Silicon atoms are arranged in a lattice structure. (a) diamond (b) zencblende (c) simple cubic (d) face-centered cubic. 									
 Gallium Arsenide (a) diamond 	e (GaAs) crystalli (b) zencblende	zes in a(c) simple	lattice structu e cubic (d)	re. face-centered cubic.					
12. The energy gap ((a) zero	E_g) of an insulator (b) greater than	r material is usually 4 eV (c) less th	$\frac{1}{2} eV (d)$	negative					
13. The [110] direction in a cubic unit cell is parallel to of the unit cell(a) an edge (b) a body diagonal(c) a face diagonal(d) the normal of a face									
14. The Miller indice (a) (113) (d) (101)	es for the plane sh (b) (313) ((e) (133)	own in the figure ar c) (131)	e denoted by	$\frac{a}{3a}$					

Solve the following Problems:

[1] Copper has a F.C.C structure and its atomic radius is 1.278 A^{0} . Calculate its density. Atomic weight of Copper = 63.54 g/mole.

[2] Calculate the densities of Ge where the lattice constants is 5.66 A° and the atomic weight of Ge is 72.59 g/mole.

[3] Show that for the closest packing of spheres, the atomic packing factor of the face-centered cubic (FCC), body-centered cubic (BCC), Simple Cubic (SC) and diamond lattices are approximately in the ratio of: 1.4:1.3:1:0.65.

[4] Draw the (110) and (111) planes and the [110] and [111] directions in a simple cubic crystal.

[5] Given the following families of planes: {201},{150}, and{312}:a) Write down all possible combination of planes for each family.b) Draw one plane for each family.

[6] Write down the Miller indices for each of the following planes.

