COLLEGE OF ENGINEERING & TECHNOLOGY

Department: Electronics and Communications Engineering

Instructor: Dr. Amr Bayoumi

Course Title: Advanced Devices Fall 2014

Course No.: EC738 Sheet 5

Date: Jan. 4, 2014

Short Channel MOSFETs

For 130nm NMOS technology, the device parameters are:

 $\mathbf{u_0} = 1.35 \times 10^{-2} \,\mathrm{m^2 V^{-1} sec^{-1}}, \ v_{\text{sat}} = 1.3 \times 10^{5} \,\mathrm{m/sec}, \ n = 2 \,\mathrm{for \ mobility \ equation}.$

 $t_{ox} = 3$ nm, $N_A = 9x10^{17}$ cm⁻³, $x_{i}= 35$ nm, Gate workfunction = 4.05 eV.

Assume: $L_{\text{metallurgical}} = L_{\text{gate}} - 2*0.3*xj$

Question 1

Assume Vds=Vgs=1.3V, and Lgate=200m.

- a) Find the saturation voltage V_{dsat} (approximate with Long Channel value)
- b) Find the field at the end of the inversion channel, E_{sat} . Approximate potential with a straight line, and $L_{channel} \sim L_{metallurgical}$
- Find the decrease in inversion channel length due to saturation using the 1D model
- d) Repeat part c using the 2D model
- e) Improve part b using the new channel length obtained from 1d.
- f) Improve 1d (again) using the results of 1e.

 NOTE: The results of 1e and 1f are the ones to be used in the rest of Sheet 5 and Sheet 6.
- g) Find the electron velocity at the end of the inversion channel.
- h) Find the effective mobility, ignoring the vertical effective field effect on mobility
- i) Find the vertical effective field in the channel

Question 2

Use the Charge Sharing Model

- a) Find threshold voltage dependence on L for Lgate=200nm and 1um, for $V_{ds} = 100 \text{mV}$ and $V_{ds} = 1.3 \text{V}$ (*Figure 3.19a*).
- b) Plot the threshold voltage dependence on Vds for between $V_{ds} = 100 \text{mV}$ and $V_{ds} = 1.3 \text{V}$, for Lgate = 200nm and Lgate=1 μ m.

Question 3

- a) Repeat Question 3 using equations 3.67-3.68, p.182-183
- b) Tabulate the results for Vth with those obtained using the charge sharing model

Question 3

Hint: use the results from Questions 1 and 3

- a) Plot the I_{ds}/W vs. V_{ds} between V_{ds} =0 to 1.3V, V_{gs} = 0.7V and 1.3V for Lgate=1 μ m.
- b) Plot the I_{ds}/W vs. V_{ds} between V_{ds} =0 to 1.3V, V_{gs} = 0.7V and 1.3V for Lgate=200nm.

Hint: Differentiate when there is pinchoff but not velocity saturation in the inversion channel (Channel Length Modulation needs to be taken into consideration for any W/L relationship)

Question 4

Hint: use the V_{th} results from Question 1, and Eqn. 3.40-3.41 For the following 4 cases:

- a) Lgate = 1um, $V_{ds} = 100 \text{mV}$, $V_{gs} = 1.3 \text{V}$.
- b) Lgate = 1um, $V_{ds} = 1.3V$, $V_{gs} = 1.3V$.
- c) Lgate = 200 nm, $V_{ds} = 100 \text{mV}$, $V_{gs} = 1.3 \text{V}$.
- d) Lgate= 200nm, $V_{ds} = 1.3V$, $V_{gs} = 1.3V$.
- Find I_{ds OFF} and subthreshold slope
- Find the off-state power dissipation between source & drain