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200 mm and 300 mm Si wafers. 
 
|SOURCE: Courtesy of MEMC, Electronic Materials, Inc. 
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GaAs ingots and wafers. 
 
GaAs is used in high speed 
electronic devices, and 
optoelectronics. 
 
|SOURCE: Courtesy of Sumitomo Electric 
Industries, Ltd. 
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(a) A simplified two dimensional illustration of a Si atom with four hybrid
orbitals, hyb. Each orbital has one electron. (b) A simplified two dimensional

view of a region of the Si crystal showing covalent bonds. (c) The energy band
diagram at absolute zero of temperature.
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A two dimensional pictorial view of the Si crystal showing covalent
bonds as two lines where each line is a valence electron.

2D View of the Crystal 

 

Fig 5.3 
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Energy band diagram of a semiconductor. CB is the conduction band and
VB is the valence band. At 0 K, the VB is full with all the valence
electrons.
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(a) A photon with an energy greater than Eg  can excite an electron from the VB to the 
CB. (b) When a photon breaks a Si-Si bond, a free electron and a hole in the Si-Si bond is 
created. 
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h+

e­

Thermal vibrations of atoms can break bonds and thereby create electron-
hole pairs.

 Thermal Energy as a Source of  
Electron-Hole Pair Generations 
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A pictorial illustration of a hole in the valence band wandering around the crystal due to the tunneling of electrons 
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Conduction by Holes 
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n-type Semiconductors 

Fig 5.9 
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Arsenic doped Si crystal. The four valence electrons of As allow it to
bond just like Si but the fifth electron is left orbiting the As site. The
energy required to release to free fifth-electron into the CB is very
small.
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p type Semiconductors 

 

Fig 5.11 
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Boron doped Si crystal. B has only three valence electrons. When it
substitutes for a Si atom one of its bonds has an electron missing and

therefore a hole as shown in (a). The hole orbits around the B- site by
the tunneling of electrons from neighboring bonds as shown in (b).
Eventually, thermally vibrating Si atoms provides enough energy to

free the hole from the B- site into the VB as shown.
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p type Semiconductors 

Fig 5.12 
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levels accept electrons from the VB and therefore create holes in the VB.
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Fig 5.13 

Energy band diagram of an n-type semiconductor connected to a
voltage supply of V volts. The whole energy diagram tilts because the
electron now has an electrostatic potential energy as well
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Drift Current (Ohm’s Law) 

𝐽=𝑒 𝑛 ǾŘŜ+𝑒 𝑝 ǾŘƘ 
• J : current density A/m2 

• n: concentration of electrons in Conduction Band cm-3 

• p: concentration of holes in Valence Band cm-3 

• vde
 and vdh

 ΥŘǊƛŦǘ ǾŜƭƻŎƛǘƛŜǎ άƳκǎέ 

 

 

 

Ex : Applied electric field = -dV/dx 

me and mh : electron and hole drift mobilities 

xEede mv
xhdh Ev m
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Mobility 

 
me and mh : electron and hole drift mobilities 
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e and h : electron and hole mean free time 
                    (time between scattering events) 

• Mobility is a material property 
• A measure of how easily can the electron or hole move 

in the material  
• Units: m2sec-1V-1 
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Conductivity 

σ = conductivity ( Ohm-1.m-1) 

𝜌=𝑐𝑜𝑛𝑑𝑢𝑡𝑖𝑣𝑖𝑡𝑦=1/𝜎 (Ohm.m) 

Resistance = 
𝜌𝐿

𝐴
 (Ohm) 

xhxe EepEenJ mm 

he epen mm 

xEJ 
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 Electron Diffusion Current Density 
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Hole Diffusion Current Densuty 
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Example of Presence of Both Drift and 
Diffusion Current 

 

Fig 5.31 
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When there is an electric field and also a concentration gradient, charge
carriers move both by diffusion and drift. (Ex is the electric field.)
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Total Current 

𝐽𝑡𝑜𝑡𝑎𝑙=𝐽𝑛+𝐽𝑝 

For Electrons: 𝐽𝑛=𝑞 𝑛 𝜇𝑛𝓔𝑥+𝑞𝐷𝑛
𝑑𝑛(𝑥)

𝑑𝑥
 

 

For Holes: 𝐽𝑝=𝑞𝑝 𝜇𝑝𝓔𝑥−𝑞𝐷𝑝
𝑑𝑝𝑥

𝑑𝑥
  

𝓔𝑥=−
𝑑𝑉

𝑑𝑥
,   𝐷𝑛=

𝑘𝑇

𝑞
μ𝑛, 𝐷𝑝=

𝑘𝑇

𝑞
μ𝑝 
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Example 

26 

dn/dx = (1016 − 1013) cm−3/10−4 cm ≈ 9.99*1019 cm−4. 

Jn,diff ≈ 141 A/cm2. 

Consider a sample of n-type Si doped with ND = 1018 

cm−3. Over a length of 1 μm the electron concentration 

drops from 1016 cm−3 to 1013 cm−3.   Calculate the 

current density due to diffusion. n˃ Ғ 1200 cm2/Vs 


