

Solid State Electronics EC210 AAST – Cairo Spring 2015

Lec. 6: Step Potential and Tunneling

Lecture Notes Prepared by:

Dr. Amr Bayoumi, Dr. Nadia Rafat

The physical are adding

Principles of

Electronic Materials and Devices

Third Edition

These PowerPoint color diagrams can only be used by instructors if the 3rd Edition has been adopted for his/her course. Permission is given to individuals who have purchased a copy of the third edition with CD-ROM Electronic Materials and Devices to use these slides in seminar, symposium and conference presentations provided that the book title, author and © McGraw-Hill are displayed under each diagram.

Step Barrier: E<U

Region I:

Free particle:
$$k^2 = \frac{2mE}{\hbar^2}$$

 $\Psi_{\rm I}(x) = Ae^{jkx} + Be^{-jkx}$

Region II:

$$\alpha^{2} = 2m(U - E)/\hbar^{2}$$

$$\Psi_{II}(x) = Ce^{-\alpha x} + 0$$

Stationary $\psi(x)$ for Step Barrier: E<U

Boundary Conditions at x=0:

$$\psi_I(0) = \psi_{II}(0) \rightarrow A + B = C$$

$$\frac{d\Psi_{I}(x=0)}{dx} = \frac{d\Psi_{II}(x=0)}{dx}$$

$$\frac{B}{A} = \frac{-\alpha - jk}{\alpha - jk} = \frac{1 - j\frac{\alpha}{k}}{1 + j\frac{\alpha}{k}} , \quad \text{and} \quad \frac{C}{A} = \frac{2}{1 - j\frac{\alpha}{k}}$$

$$\frac{C}{A} = \frac{2}{1 - j\frac{\alpha}{k}}$$

R = Reflection Coefficient =
$$\left| \frac{B^*B}{A^*A} \right| = 1$$

 \rightarrow T = Trasnmission Coeff. = 0 (Since this is a potential which has no end, i.e. extends to $+\infty$ -> electrons will never exit from other side)

Tunneling: Solution of Schrodinger's Eqn.

$$\psi_{II}(x) = B_{1}e^{\alpha x} + B_{2}e^{-\alpha x}$$

$$\alpha^{2} = \frac{2m}{\hbar^{2}}(V_{o} - E)$$

$$\psi_{II}(x) = A_{1}e^{jkx} + A_{2}e^{-jkx}$$

$$\psi_{III}(x) = C_{1}e^{jkx} + C_{2}e^{-jkx}$$

$$V_{III}(x) = C_{1}e^{jkx} + C_{2}e^{-jkx}$$

$$k^{2} = \frac{2mE}{\hbar^{2}}$$
There is a finite probability at $x = a$

$$k^{2} = \frac{2mE}{\hbar^{2}}$$

$$V_{(x)}$$

$$V_{o} \parallel$$

$$V_{(x)}$$

$$V_{(x)}$$

$$V_{o} \parallel$$

$$V_{(x)}$$

$$V_{o} \parallel$$

$$V_{(x)}$$

Fig. 3.16