Course title: Electrical Machines

Course code: EE329

Sheet #5

- 1- A 3 phase induction motor is wounded for 4 poles and is supplied from 50Hz system. Calculate:
 - a) Synchronous speed. b) Speed of the motor when the slip is 4%. c) Rotor current frequency when the motor runs at 600rpm.
- 2- The parameters of the equivalent circuit referred to stator for a 200V, 3-phase, 4 pole, 60Hz, star connected induction motor are:

R ₁ =0.2Ω	X ₁ =0.5Ω	$R_c = 400\Omega$
R ₂ =0.1Ω	X ₂ =0.2Ω	X _m =20Ω

For a slip of 2.5%, calculate: a) No load (excitation) current. b) Input current.

3- The equivalent circuit parameters referred to stator of a 208V, 60Hz, 6 pole, star connected, three phase induction motor are:

$R_1 = 0.21\Omega$	X ₁ =0.6Ω	$R_c=210\Omega$
R ₂ =0.33Ω	X ₂ =0.6Ω	X _m =450Ω

When the motor runs at a slip of 5% on full-load, using induction motor equivalent circuit and power flow diagram determine: a) Developed torque. b) Input power. c) Stator copper losses. d) Core losses. e) Power input to rotor.

4- A 25hp, 60Hz, 575V, 6 poles motor is operating at a slip of 0.03. The motor is star connected and the equivalent circuit parameters referred to stator are:

R ₁ =0.3723Ω	X ₁ =1.434Ω	R _c =354.6Ω
R ₂ =0.390Ω	X ₂ =2.151Ω	X _m =26.59Ω

Determine: a) Input current. b) Output power. c) Output torque. d) Efficiency if the motor is operating at full load.

5- The shaft load on a 40hp, 60Hz, 460V, 4 poles induction motor is such as to cause the machine to operate at 1447 r/min. The motor is star connected and the equivalent circuit parameters referred to stator are:

$R_1 = 0.1418\Omega$	X ₁ =0.7273Ω	R _c =212.73Ω
R ₂ =1.1Ω	X ₂ =0.7284Ω	X _m =21.27Ω

Determine: a) Input current b) Output current c) Power input to rotor d) Efficiency, if the motor is operating at full load.

6- A 3 phase, 8 pole induction motor, star connected, rated at 880r/min, 30hp, 60Hz, 460V has the following parameters referred to stator:

$R_1 = 0.109102$	$X_1 = 1.53002$	$N_c = 109.102$
R ₂ -0.19112	A ₂ =0.373322	Λ _m -14.10Ω

Determine: a) Input current. b) Efficiency if the motor is operating at 75% of its full load.