Control System II EE 412

Lecture 5

Dr. Mostafa Abdel-geliel

State-Space Diagonalization Function

Eign values and eign vectors

Definition: for a given matrix A, if ther exist a real (complex) λ and a corresponding vector $v\neq 0$, such that

$$A\mathbf{v} = \lambda \mathbf{v}$$

Then λ is called eight value and ν is the eight vector

i.e. And since
$$\mathbf{v}\neq\mathbf{0}$$
 $(A-\lambda I)\mathbf{v}=0$

Then

$$(A - \lambda I) = 0$$

i.e

$$\det(A - \lambda I) = 0$$

Eigenvalues of an *n X n* Matrix A.

The eigenvalues are also called the characteristic roots. Consider, for example, the following matrix **A**:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$$

$$|\lambda \mathbf{I} - \mathbf{A}| = \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ 6 & 11 & \lambda + 6 \end{vmatrix}$$

$$= \lambda^{3} + 6\lambda^{2} + 11\lambda + 6$$
$$= (\lambda + 1)(\lambda + 2)(\lambda + 3) = 0$$

The eigenvalues of **A** are the roots of the characteristic equation, or -1, -2, and -3.

Example

$$A = \begin{bmatrix} 0 & 1 \\ 8 & -2 \end{bmatrix}$$

then the eign value is the solution of $|\lambda I - A| = 0$

$$\left|\lambda I - A\right| = \begin{vmatrix} \lambda & -1 \\ -8 & (\lambda + 2) \end{vmatrix} = 0$$

$$\lambda^{2} + 2\lambda - 8 = 0 = (\lambda + 4)(\lambda - 2)$$
then
$$\lambda_{1} = -4 \quad and \quad \lambda_{2} = 2$$

Eign vectors are obtained as

at
$$\lambda = -4$$

 $(\lambda_1 \mathbf{I} - \mathbf{A}) v_1 = 0$
i.e.

$$\begin{bmatrix} -4 & -1 \\ -8 & -2 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = 0$$

$$\therefore \quad v_{12} = -4v_{11}$$

$$let \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$$

$$at \lambda_{2} = 2$$

$$(\lambda_{2}I - A)v_{2} = 0$$

$$i.e.$$

$$\begin{bmatrix} 2 & -1 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} = 0$$

$$\therefore v_{22} = 2v_{2}$$

$$let \quad \mathbf{v}_{2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Eign vector matrix

$$V = [\mathbf{v}_1 \ \mathbf{v}_2 \cdots \mathbf{v}_n]$$

For all eign values and vectors

$$A\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i}; \quad i = 0,1,\ldots,n$$

These equations can be written in matrix form

$$AV = V\Lambda$$

where

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = diag\{\lambda_i, i = 1, 2, \dots, n\}$$

thus

$$A = \mathbf{V}\Lambda\mathbf{V}^{-1}$$
$$\Lambda = \mathbf{V}^{-1}A\mathbf{V}$$

thus
$$e^{At} = \phi(t) = I + At + A^{2} \frac{t^{2}}{2!} + \dots$$

$$e^{At} = Ve^{\Lambda t}V^{-1}$$

$$e^{\Lambda t} = \phi(t) = I + \Lambda t + \Lambda^{2} \frac{t^{2}}{2!} + \dots$$

$$e^{\Lambda t} = \begin{bmatrix} e^{\lambda_{1}t} & & \\ & e^{\lambda_{2}t} & \\ & & \ddots & \\ & & & e^{\lambda_{n}t} \end{bmatrix} = diag(e^{-\lambda_{i}t}, i = 1, 2, \dots, n)$$

Then for a given system has a system matrix A and a state vector X

The diagonal system matrix Ad and state Xd

$$A_{d} = \Lambda = T^{-1}AT$$

$$\mathbf{x} = T \mathbf{x}_{d}; \mathbf{x}_{d} = T^{-1}\mathbf{x}$$

$$T = V = eign \quad vector \quad matrix$$

$$A_{d} = V^{-1}AV$$

$$B_{d} = V^{-1}B_{1}$$

$$C_{d} = C_{1}T$$

$$D_{1} = D_{2}$$

Example 2: find the transformation into diagonal form and the state transition matrix of example 1

$$\Lambda = \begin{bmatrix} -4 & 0 \\ 0 & 2 \end{bmatrix} \\
e^{\Lambda t} = \begin{bmatrix} e^{-4t} & 0 \\ 0 & e^{2t} \end{bmatrix} \\
e^{At} = Ve^{\Lambda t}V^{-1}$$

$$e^{At} = \begin{bmatrix} 1 & 1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} e^{-4t} & 0 \\ 0 & e^{2t} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -4 & 2 \end{bmatrix}^{-1} \\
e^{At} = \frac{1}{6} \begin{bmatrix} 1 & 1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} e^{-4t} & 0 \\ 0 & e^{2t} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 4 & 1 \end{bmatrix}$$

Discus how to obtain the transformation matrix between two representation

Diagonal Canonical Form

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^n + b_1 s^{n-1} + \dots + b_{n-1} s + b_n}{(s + p_1)(s + p_2) \dots (s + p_n)}$$

$$= b_0 + \frac{c_1}{s + p_1} + \frac{c_2}{s + p_2} + \cdots + \frac{c_n}{s + p_n}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} -p_1 \\ -p_2 \\ \vdots \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ x_1 \\ x_2 \\ \vdots \\ -p_n \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} + b_0 u$$

Alternative Form of the Condition for Complete State Controllability.

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

where $\mathbf{x} = \text{state vector}(n\text{-vector})$

 $\mathbf{u} = \text{control vector}(r\text{-vector})$

 $\mathbf{A} = n \times n$ matrix

 $\mathbf{B} = n \times r$ matrix

If the eigenvectors of **A** are distinct, then it is possible to find a transformation matrix **P** such that

Controllability and Observability

- •Determine and control the system state from the observation of the output over a finite time interval.
- •The concepts of *controllability and observability* were introduced by Kalman.
- They play an important role in the design of control systems in state space.
- •In fact, the conditions of *controllability and observability* may govern the existence of a complete solution to the control system design problem.

The vectors

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$$

are linearly dependent since

$$\mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_3 = \mathbf{0}$$

The vectors

$$\mathbf{y}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \mathbf{y}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{y}_3 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$

are linearly independent since

$$c_1 \mathbf{y}_1 + c_2 \mathbf{y}_2 + c_3 \mathbf{y}_3 = \mathbf{0}$$

implies that

$$c_1 = c_2 = c_3 = 0$$

Note that:

- if an nxn matrix is nonsingular (that is, the matrix is of rank n or the determinant is nonzero) then n column (or row) vectors are linearly independent.
- •If the nxn matrix is singular (that is, the rank of the matrix is less than n or the determinant is zero), then n column (or row) vectors are linearly dependent

To demonstrate this, notice that

$$\begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \\ 3 & 1 & 4 \end{bmatrix} = \text{singular}$$
$$\begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \\ 3 & 1 & 2 \end{bmatrix} = \text{nonsingular}$$

CONTROLLABILITY

A system is said to be controllable, if every state variable of the process can be controlled to reach a certain objective in a finite time by some unconstrained control u(t)

Or

A system is said to be controllable at time t_0 if there exist a piecewise unconstrained continuous input "u(t)" (control vector) that will transfer the system from any initial state $\mathbf{x}(t_0)$ to any other state (final state) in a finite interval of time; $t_{f_-} t_0 \ge 0$.

Complete State Controllability of Continuous-Time Systems

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$

where
$$\mathbf{x} = \text{state vector } (n\text{-vector})$$

 $u = \text{control signal (scalar)}$
 $\mathbf{A} = n \times n \text{ matrix}$
 $\mathbf{B} = n \times 1 \text{ matrix}$

The system described by $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$ | to be state controllable at t=t0 if it is possible to construct an unconstrained control signal that will transfer an initial state to any final state in a finite time interval $0 \le t \le t_1$ If every state is controllable, then the system is said to be completely state controllable.

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}u(\tau) d\tau$$

Applying the definition of complete state controllability just given,

$$\mathbf{x}(t_1) = \mathbf{0} = e^{\mathbf{A}t_1}\mathbf{x}(0) + \int_0^{t_1} e^{\mathbf{A}(t_1-\tau)}\mathbf{B}u(\tau) d\tau$$

$$\mathbf{x}(0) = -\int_0^{t_1} e^{-\mathbf{A}\tau} \mathbf{B} u(\tau) d\tau$$

$$\mathbf{x}(0) = -\sum_{k=0}^{n-1} \mathbf{A}^k \mathbf{B} \boldsymbol{\beta}_k$$

$$\mathbf{x}(0) = -\sum_{k=0}^{n-1} \mathbf{A}^k \mathbf{B} \boldsymbol{\beta}_k = -[\mathbf{B} \mid \mathbf{A} \mathbf{B} \mid \cdots \mid \mathbf{A}^{n-1} \mathbf{B}] \begin{bmatrix} \frac{\beta_0}{\beta_1} \\ \vdots \\ \vdots \\ \beta_{n-1} \end{bmatrix}$$

The system is completely state controllable if and only if the vectors $\mathbf{B}, \mathbf{AB}, \dots, \mathbf{A}^{n-1}\mathbf{B}$ are linearly independent

 $\begin{bmatrix} \mathbf{B} \mid \mathbf{A}\mathbf{B} \mid \cdots \mid \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}$ is of rank n

Another prove

$$e^{At} = \phi(t) = I + At + A^{2} \frac{t^{2}}{2!} + \dots$$

$$x(t) = \phi(t)x(0) + \int_{0}^{t} \phi(t - \tau)Bu(\tau)$$

$$x(t) = e^{At}x(0) + \int_{0}^{t} e^{(t - \tau)}Bu(\tau)$$

$$x(t) = e^{At}x(0) + e^{At}\int_{0}^{t} e^{-\tau}Bu(\tau)$$

$$x(t) = (I + At + A^{2} \frac{t^{2}}{2!} + ...)[x(0) + \int_{0}^{t} e^{-A\tau} Bu(\tau) d\tau]$$

The effect of input u(t) $\neq 0$ implies $\int_{0}^{t} e^{-A\tau} Bu(\tau) d\tau \neq 0$

$$e^{-A\tau}Bu(\tau) = [I \ A\tau \frac{A^2\tau^2}{2!}...]Bu(\tau)$$

$$[B \ AB \ A^2B\cdots] \begin{bmatrix} I \\ I\tau \\ I\frac{\tau^2}{2!} \\ \vdots \end{bmatrix} u(\tau)$$

Then the necessary condition to control x(t)

$$\begin{vmatrix} B & AB & A^2B \cdots A^{n-1}B \end{vmatrix} \neq 0$$

Observability

• Definition:

For a dynamic system described by state variable

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
 $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$.

- The state x is said to be observable if for a given input u(t) within a finite time $t_f > t_o$ and the output y(t) and by the knowing of system parameters (A,B,C and D) the initial state x(to) is determined

$$y(t) = C x(t) = C(I + At + A^{2} \frac{t^{2}}{2!} + ...)[x(0) + \int_{0}^{t} e^{-A\tau} Bu(\tau) d\tau]$$

$$y(t) - C \int_{0}^{t} e^{-A\tau} Bu(\tau) d\tau = C(I + At + A^{2} \frac{t^{2}}{2!} + ...)x(0)$$

$$y(t) - C \int_{0}^{t} e^{-A\tau} Bu(\tau) d\tau = [I \text{ It } I \frac{t^{2}}{2!} ...] \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} x(0)$$

$$x(0) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^{-1} [I \text{ It } I \frac{t^{2}}{2!} ...]^{-1} (y(t) - C \int_{0}^{t} e^{-A\tau} Bu(\tau) d\tau)$$

It implies that
$$\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$
 must be nonsingular

If the system is completely observable, then, given the output y(t) over a time interval

The system is completely observable if and only if the n*nm matrix

$$\begin{bmatrix} \mathbf{C}^* \mid \mathbf{A}^*\mathbf{C}^* \mid \cdots \mid (\mathbf{A}^*)^{n-1}\mathbf{C}^* \end{bmatrix}$$

is of rank n or has n linearly independent column vectors. This matrix is called the observability matrix.

Consider the system described by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{B} \mid \mathbf{A}\mathbf{B} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{CB} \mid \mathbf{CAB} \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{C}^* \mid \mathbf{A}^*\mathbf{C}^* \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Show that the following system is not completely observable:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
$$\mathbf{y} = \mathbf{C}\mathbf{x}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 4 & 5 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{C}^* \mid \mathbf{A}^*\mathbf{C}^* \mid (\mathbf{A}^*)^2\mathbf{C}^* \end{bmatrix} = \begin{bmatrix} 4 & -6 & 6 \\ 5 & -7 & 5 \\ 1 & -1 & -1 \end{bmatrix}$$

$$\begin{vmatrix} 4 & -6 & 6 \\ 5 & -7 & 5 \\ 1 & -1 & -1 \end{vmatrix} = 0$$

Diagonal representation of SS model and its relation to Observability and controlability and

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & \lambda_n \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} \mathbf{x}(t)$$

Discuss the relation between Observability and controlability and the coefficient of B and C matri