
Abstract— One of main challenges in harvesting power from a 

PV source is maximum power point tracking (MPPT). This is due to 

the nonlinear behaviour and characteristics of PV arrays. 

Conventional MPPT techniques usually utilize a hill climbing 

process which requires partial/full scan of the array power-voltage 

(P-V) curve resulting in high power fluctuation during peak 

searching. Dynamic estimation techniques, such as the Kalman 

filter, benefit from their ability to estimate non-measurable signals 

with rapid convergence. In this paper, a MPPT technique based on 

the Iterated Unscented Kalman Filter (IUKF) is presented. The 

proposed technique achieves: (i) satisfactory MPPT for PV arrays 

working under varying environmental conditions, (ii) PV array 

modelling with full parameter estimation including temperature 

and insolation level, and (iii) full estimation of the working P-V 

curve for the PV array. Only six measurement points are required 

for MPPT, modelling, and curve estimation; hence no full scan for 

the P-V curve is needed. This paper presents the system 

mathematical model and simulations. Moreover, an experimental 

setup is implemented illustrating practical results at various 

insolation levels and temperatures to validate the proposed 

technique. 

 

Keywords— Photovoltaic, Maximum Power Point, Maximum 

Power Point Tracking, Kalman Filter. 

 

I. INTRODUCTION 

 

Renewable energy sources depend on many performance metrics 

such as efficiency, reliability, cost, grid connection regulations, 

energy storage cost, and advanced control algorithm 

implementation [1-2]. Among the varying sources of renewable 

energy, the most common are hydropower, wind, and 

photovoltaic (PV) [1]. Examining PV characteristics reveals the 

fact that the available power from any PV array varies 

nonlinearly with the solar insolation.   

This variation, in addition to the dependency on the array 

temperature, creates the intermittent nonlinear PV power 

behavior. Hence, the available power from any PV source needs 

to be tracked as it varies with the environmental conditions. 

Therefore, adequate maximum power point tracking (MPPT) is 

unavoidable [3]. Numerous MPPT techniques have been 

proposed for PV optimum operating point tracking [3].  

These techniques vary in complexity, requirements, convergence 

speed, cost, effectiveness, and implementation. Hill climbing 

[4-7] and perturb and observe (P&O) [8-11] methods are the 

most common MPPT techniques. In these techniques, the 

tracking process is repeated periodically until the MPP is 

located. The system then oscillates about this MPP. The 

oscillation can be minimized by decreasing the perturb value. 

However, a smaller perturb slows down the system. A 

variable-perturb-value approach that decreases the perturb value 

towards the MPP is an alternative. The incremental conductance 

(IncCond) [12-15] technique relies on the fact that the slope of 

the PV array power curve is zero at the MPP. Fast tracking is 

possible with bigger increments but the system might not operate 

exactly at the MPP and instead oscillate about it; exhibiting a 

similar trade off as that of the P&O technique. Another 

technique utilizes the linear relation between the voltage at the 

maximum power point and the array open circuit voltage at 

different environmental conditions [16-18]. Once the relation is 

known, the voltage at the maximum power can be computed 

using the array open circuit voltage measured periodically by 

momentarily shutting down the power converter. Some 

disadvantages exist, mainly temporary power loss. To prevent 

this power loss, pilot cells from which the array open circuit 

voltage can be obtained without shutting down the power 

converter are used [16], but this is usually accompanied by 

additional cost and wiring complexity [3]. Utilizing the fact that 

the current at the maximum power point has a nearly linear 

relation with the PV array short circuit current, other tracking 

techniques are reported [16, 17, 19]. However, measuring the PV 

array short circuit current during operation is a critical problem, 

as an extra switch has to be added to the power converter to 

periodically short circuit the PV array. This increases the system 

cost and the number of components. Fuzzy logic controllers are 

able to work with imprecise inputs, mathematical model 

independency, and system nonlinearity tolerance. A seven fuzzy 

level method is used as MPPT technique in [20-21]. MPPT fuzzy 

logic controllers perform well under varying environmental 

conditions. However, their effectiveness suffers from designer 

dependency in selecting the proper error computation and the 

rule base table [3]. Artificial intelligence, especially neural 
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networks, can be used for MPPT [22-24].  

 The Kalman filter (KF), as a dynamic estimation technique, 

has played an important role in many industrial applications as 

speed sensorless estimation in electric drives [25-27], non-linear 

mechanical loads [28], power system protection and harmonics 

estimation [29-30], robots/particles localization [31-33], and 

fault diagnostics [34]. Also, KF-based techniques are widely 

used in distributed generation and islanding detection 

applications [35-36]. The ability to estimate non-measurable 

signals, fast convergence, and direct implementation encourages 

wider utilization of KF-based techniques in various industrial 

applications. One classification in estimation problems is linear 

vs. nonlinear, depending on whether the system model and/or 

measurements model are linear or nonlinear functions of the 

states [37-39]. Of the most popular nonlinear estimation 

algorithms are the Extended KF (EKF), Iterated Extended KF, 

and Iterated Unscented KF (IUKF) [40].  

 From the previous discussion, it can be seen that the MPPT 

problem is characterized by the following. First, a dynamic 

model is available with uncertainty in some of the model 

parameters. Second, a number of measurement points (power 

versus voltage) can be collected during operation. Hence, KF is 

suitable for dynamic estimation of the MPP. EKF is appropriate 

and fast for real-time processing specially with priori 

information of the measurement and process noise covariance. 

The trade-off between the computational burden and error 

introduced by neglecting the high order terms in linearization is 

a bottleneck. This can be overcome by employing IUKF. In this 

paper, an IUKF-based algorithm for PV MPPT application is 

proposed. The presented technique is capable of determining the 

operating point for the maximum available power without any 

hill climbing process. It utilizes only six operating points on the 

array P-V curve, in addition to the stored PV array data sheet 

curves to estimate the actual operating P-V curve then jumps 

directly to the maximum power operating point without any 

perturb and observe steps. The proposed technique estimates, as 

a by-product, the PV array characteristic parameters. The 

estimated parameters are: ideality factor, reverse saturation 

current, equivalent series resistance, equivalent parallel 

resistance, array temperature, and incident solar insolation.   

II. PV CHARACTERISTICS AND MODELLING  

     In this section, the characteristics of a typical PV array are 

illustrated showing the need for MPPT. In addition, PV cell 

modelling is discussed showing the necessary parameters needed 

for full model description. 

A. PV array characteristics 

     PV arrays are characterized by the non-linear behaviour of 

voltage and current relations. Typical PV array characteristics 

are shown in Fig. 1. As shown in Fig. 1, in addition to the 

nonlinear relation between the PV array voltage and current, the 

relation is dependent on external environmental conditions, 

temperature, and insolation. These dependencies and 

nonlinearity create a challenge in any PV application. To further 

illustrate using a practical example, the KYOCERA KC50T PV 

array [41] is simulated using the MATLAB/SIMULINK 

package, plotting the variation of its power versus voltage curve 

at different insolation levels as shown in Fig. 2. It can be shown 

from Fig. 2 that the maximum power point is variable with 

insolation, as well as temperature. The array voltage, 

corresponding to the maximum power point, is not fixed either. 

Hence, tracking is mandatory to force the PV array to operate at 

its available maximum power point. 

  
(a) (b) 

Fig. 1: Typical PV array characteristics, KYOCERA KC50T PV  [41] 

(a) Variation of PV characteristics with solar irradiance, T = 250C 

(b) Variation of PV characteristics with temperature, irradiance = 1000 W/m2 

 

 
Fig. 2: KYOCERA KC50T PV array [41] simulation for array power variation 

with array voltage for different insolation levels at constant temperature of 250C 
      

B. PV cell model 

   Fig. 3 shows the single-diode equivalent circuit of a PV cell 

[42]. There is also double-diode model for PV cell [43], but the 

single-diode model is accurate enough for most MPPT 

applications so it is used in this paper. The light-generated 

current, �� , is proportional to insolation �, and can be written as 

shown in (1); 

�� = ����� ��� + 
�(�
 − ����)  

(1) 

 

where �� is the reference insolation, ��� is the current at ��, 
�  is the temperature coefficient of �� , �
  is the absolute 

temperature of the cell in Kelvin, and ����  is the reference cell 

temperature in Kelvin. The reference insolation is often taken as �� = 1 kW/m
2
. The diode current �� is given by the Shockley’s 

equation shown in (2); 
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�� = �� ���� ��(� + ���)���
 � − 1�  

(2) 

 

where the quantity � + ��� is the voltage across the diode, �� 

is the reverse saturation current, � is the electron charge, � 

and �  are the cell voltage and current, ��  is the series 

resistance, � is the ideality factor, and � is the Boltzmann’s 

constant. The reverse saturation current �� is sensitive to the 

temperature and can be given by (3); 

�� = ���  �
����!
" ��� #�$���  1���� −

1�
!% 
 

(3) 

where ���  is the reverse saturation current at reference 

temperature ���� . $� in (4) is the bandgap energy in eV. 
 

$� = 1.16 − 7.02 × 10,- �
.�
 + 1108 

 

(4) 

 

 The cell temperature �
  is closely related to the solar 

insolation and can be estimated [44] from (5); 
 

�
 = 273 + �1 + �234� − 200.8 � � 
 

(5) 
 

where �1  is the ambient temperature in 
°
C, 234�  is the 

Nominal Operating Cell Temperature, in 
°
C. From the equivalent 

circuit in Fig. 3, we can write the I–V relation of a PV cell as 

shown in (6); 
 

� = �� − �� ���� ��(� + ���)���
 � − 1� − (� + ���)�5  

 

(6) 

 

where �5 is the parallel resistance. It is noted that the current � 
appears on both sides of Eq. (6), which implies that � cannot be 

expressed as an explicit function of � also �� , �� and �
 are 

considered functions of insolation �. 

 

III. PROPOSED KALMAN FILTER BASED MPPT 

TECHNIQUE 

In this section, the algorithm for estimating the optimum 

voltage-power operating point (maximum power point) is 

presented. At least six voltage,�6 , and current, �7,  measurements 

are required in the proposed algorithm. As shown in Fig. 4, two 

steps are performed: curve fitting, followed by the Iterated 

Unscented Kalman Filter (IUKF). The advantage of the IUKF 

compared with the standard Kalman Filter or the Extended 

Kalman Filter is that it does not have a constraint on the 

statistical distribution of the measurement noise. The IUKF is 

described in details in several references [45-46]. Both steps 

require an initial guess for the parameters to be estimated. Six 

parameters are first estimated; these are the ideality factor, �, 

the parallel resistance, �5 , the series resistance, �8 , Cell 

Temperature, �9 , insolation, � , and the reverse saturation 

current, �� [47-48]. These six estimated parameters are assumed 

to be close to the unknown actual values of the parameters at the 

operation condition of the PV module. Using the estimates of 

these six parameters, the IUKF estimates the optimum 

voltage-power output. 

 

 
Fig. 3: PV cell single diode model [42] 

 
Fig. 4: Proposed technique flow chart 

A. Curve Fitting Method 

   The PV manufacturer data curves are used to estimate the six 

parameters. The manufacturer provides data for the variation in 

currents versus voltage, at constant temperature and insolation. 

In order to carry out the estimation, at least six measurements are 

needed. For each measurement, a lookup function is 

implemented to estimate the initial guess for the six parameters 

by interpolation from the manufacturer data. For each 

measurement, the vector of parameters’ initial guesses is given 

by (7); �:�,</>? = @�:? �A�? �B8? �B5? �B9? �B?C (7) 

where �:�,</>?  denotes the initial guess vector, and superscript k 

denotes the k
th

 voltage-current measurement, and subscript 0 

denotes the initial guess. The subscript R indicates that the initial 

guess is obtained based on constant insolation data and the 

subscript T denotes that the initial guess is obtained based on 

constant temperature data. Assume we have 2 measurements. 

There are a total of 2 × 2 initial guess vectors. A weighted 

average is computed for these 2 × 2 vectors. 

 First, the mean of the initial guess vectors, with respect to 

constant insolation and constant temperature, are calculated 

using (8) and (9). 

�:�,<D�1E = 12F�:�,<?
G

?HI
 

 

(8) 

 

�:�,>D�1E = 12F�:�,>?
G

?HI
 

 

(9) 

Then, the above two means are averaged with different weights. 

The weight of each mean value depends on the number of 

changes in the domains of temperature and insolation due to the 

changes in the current-voltage measurements. The weights are 

computed using (10) and (11); 
 

J< = 1KL�. + 1ML�. 
 

(10) 
 

J> = 1KL�. + 1ML�. 
 

(11) 
 

where, LBR is the number of Change of Lower boundary in 

Constant Insolation Data, UBR is the number of Change of 

+
I

_
V

SR

PR
lI

six V-I measurment 

points 

look up the six parameters 

weighted average for the 

intial guess parameters.

carry out curve fitting  

apply  iterated 

unscented Kalman Filter 

to estimate optimum 

voltage-power output 
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Upper boundary in Constant Insolation Data, LBT is the number 

of Change of Lower boundary in Constant Temperature Data, 

and UBT is the number of Change of Upper boundary in 

Constant Temperature Data. How LBR, UBR, LBT and UBT are 

determined is described next. Figure 5 shows five 

voltage-current measurements mapped into the PV array 

characteristic chart. Note that there are a total of five 

voltage-current curves for the case of constant temperature and 

different insolation. It is assumed that the current measured at 

4V is the first measurement; the current measured at 8V is the 

second measurement and so on. From Figure 5, as current 

measurement moves from 4V to 20V, it only crosses the upper 

bound of the PV curve once; thus, UBT = 1. On the other hand, it 

crosses the lower bound of PV curve twice, which are at 8V to 

10V and 15V to 20V. Therefore, LBT = 2. Similarly, both LBR 

and UBR can be determined using a similar approach through 

mapping voltage-current measurement onto PV array 

characteristic chart for constant irradiance case. 

 
Figure 5: Measurements mapped onto the PV characteristic chart, T = 250C 

 

The initial guess vector that will be used in the curve fitting 

process is given by (12). 
 

�:� = J<�:�,<D�1E +J>�:�,>D�1E
J< +J>  

 

(12) 

 

If one or more of the LBR, UBR, LBT and UBT are equal to zeros, 

it results in a singularity. Therefore, further conditions to 

determine J< and/or J>  will be needed. These are shown in 

Table 1 below. 
 

Table 1 Additional Conditions for NO and NP 

If KL� = 0 and ML� = 0, then J< = 1,	J> = 0 

If KL� = 0 and ML� = 0, then J< = 0,	J> = 1 

If KL� = 0, ML� = 0, KL� = 0 and ML� = 0, then J< =0.5,	J> = 0.5 

If KL� ≠ 0 and ML� = 0, J> = I
TU>V 

If KL� = 0 and ML� ≠ 0, J> = + I
WU>V 

If KL� ≠ 0 and ML� = 0, J> = I
TU>V 

If KL� = 0 and ML� ≠ 0, J> = I
WU>V 

 

The curve fitting will estimate the six parameters such that they 

fit Eq. (13). 

and ��� is the short circuit current (3.31A for KC50T module), 
�  is the Temperature coefficient of short circuit current 

(1.33 × 10,"	A/℃ for KC50T module ), 28 is number of solar 

cell in the array (36 in this case), Z is the Boltzmann constant (1.38 × 10,."JK,I), �7? and �6 ? are the k
th

 current and voltage 

measurement set respectively. Finally, the IUKF is implemented 

to estimate the optimum voltage, �B]5^, that corresponds to the 

maximum power, _BD1` , at the current condition. 

 
 

a(�:) ≡ �7? − #�A� − �A�  	 ���	  �c�6 ? + �7?�B8d28�:�B9Z ! − 1!
− �6 ? + �7?�B8�B5 % = 0 

 

 

(13) 

where   �A� = eB
I��� ��� + 
�c�B9 − 298d 

 

(14) 
 

B. Iterated Unscented Kalman Filter 

Here, the implementation of IUKF for MPP estimation is 

presented. For each measurement, the output power is computed. 

The maximum output power among all measurements is used as 

an initial guess for the optimal operational voltage, �B]5^,gEg^g1� . 
In the P-V curve, the maximum power point satisfies Eq. (15). 

 h_D1`h�]5^ = 0 

 

(15) 

 

In implementing the IUKF, a pseudo measurement is 

employed. The pseudo measurement is the slope of the power 

curve. Thus, the measurement equation that corresponds to the 

condition in Eq. (15) is given by (16); 
 h_
h�B]5^ = �A]5^
− #�B]5^�A�	���	(�c�B]5^ + �A]5^�B8d28�:�B9Z ) # �

28�:�B9Z% +
�B]5^�B5 % 

 

 

(16) 

where, 

 

�A]5^ = i�A� − �A� j�kcl
mnopqrAnop<BsdGsE:>Btu − 1v

− �B]5^ + �A]5^�B8�B5 w 

 

 

(17) 

 

and �A]5^ is the current output that corresponds to the updated �B]5^ . The six estimated parameters c�:, �A�, �B8, �B5, �B9 , �Bd , 

obtained from the curve fitting step, are substituted into (16) and 

(17) to estimate both �B]5^ and �A]5^. The IUKF process is as 

follows. First, the initial guess is obtained for �B]5^,gEg^g1�  using 

(15). Then the state covariance, ℘y , which is also known as the 

level of confidence or the expected error boundary of the 

estimated parameters, is initialized. Next, a sigma point (σ) is 

generated using the state covariance, and �B]5^ is mapped into 

the sigma point [49] as shown by (18); 
 �Bz{]5^ = @�B]5^ �B]5^ + | �B]5^ − |C> 

 

(18) 
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with 
 | = }(K + ~)(℘y + �) (19) 
 

where, � is the process noise variance, K is the number of 

estimated states, which is one in this case, and ~ is given (20); 
 ~ = �.(K + �) − K (20) 
 

where the � is a constant small positive value, (1 × 10,- ≤� ≤ 1) [45], that determine the spread of sigma point around 

the estimated states. The � is usually given by (21) as in [40]. 
 � = 3 − K (21) 

Then, for each of the mapped states in �Bz{]5^  in (18), the 

corresponding estimated optimum current,	�A{]5^ , for each mapped 

�Bz{]5^ is calculated based on (6). For each set of estimated �Bz{]5^ 	and 

	�A{]5^, an estimated pseudo measurement is calculated using (16). 

Let the estimated pseudo measurement vector be that in (22); 
 �{B = ��:I �:. �:"�> (22) 
 

where �:Iis evaluated at c�B]5^d, �:. is evaluated at c�B]5^ + |d, 
and �:" is evaluated at c�B]5^ − |d. As mentioned in section III, 

the advantage of the IUKF when compared with the standard 

Kalman Filter or the Extended Kalman Filter is that it does not 

have a constraint on the statistical distribution of the 

measurement noise. This is critical in this problem, since (16) 

shows that the estimation errors exhibits non-Gaussian noise. 

The mean by which the Unscented update gain is determined is 

described next. First, four weight variables are given as in 

(23)-(26); 

��D�1E = ~K + ~ 

 

 

(23) 

��
]� = ~K + ~ + (1 − �. + �) 
 

 

(24) 

�gD�1E = �g
]� = 12(K + ~) 
 

 

(25) 

�g
]� = �gD�1E (26) 
 

where, � is an arbitrary constant. A good initial guess for � is 2  [40]. Next, the mean of the mappings of the estimated 

optimum voltage, and the estimated measurements are calculated 

as using (27) and (28). 
 

�B]5^D�1E =F�gD�1E
.T

gH�
�Bz{]5^(� + 1)  

(27) 

 

�{BD�1E = F�gD�1E
.T

gH�
�{B(� + 1)  

(28) 

 

At � = 0 , �gD�1E  is calculated using (23), when � ≠ 0 , �gD�1E is calculated using (25). Next, the predicted covariance 

of the mappings of the estimated optimum voltage and the 

pseudo measurements are found using (29)-(31) [49]. 
 

℘`` =F�g
]�
.T

gH�
��Bz{]5^(� + 1)
− �B]5^D�1E� ��Bz{]5^(� + 1) − �B]5^D�1E�> 

 

 

(29) 

 

℘�� = F�g
]�
.T

gH�
@�{B(� + 1)
− �{BD�1EC@�{B(� + 1) − �{BD�1EC> 

 

 

(30) 

 

℘`� = F�g
]�
.T

gH�
��Bz{]5^(� + 1)
− �B]5^D�1E� @�{B(� + 1) − �{BD�1EC>		 

 

 

(31) 

 

Finally, the estimated optimum voltage and its covariance are 

updated using (32) and (33); 
 �B]5^ = �B]5^ − ℘`�(℘�� + ℜ),I�{BD�1E  (32) 

 ℘y = ℘y − ℘`�(℘�� + ℜ),>(℘`�)>  (33) 
 

where ℜ is the pseudo measurement noise covariance. A small 

value of ℜ is assumed to avoid singularity in	(℘�� + ℜ),I. 

The optimum current, �A]5^, that corresponds to the updated �B]5^ 
is recalculated using (17). The iteration process is repeated until 

it meets the designated maximum iteration, or until the error 

between the estimated pseudo measurement and the desired 

measurement falls within a threshold set by (34). 
 ���c0 − �{BD�1Ed ≤ 10,� (34) 
 

IV. SIMULATION RESULTS 

 Assume the simulation environment of the PV module to be 

at 600 W/m
2
 solar insolation, and a cell temperature is 25℃. To 

study the impact of the collected measurements on the accuracy 

of estimation in the proposed technique, six sets (each has six 

measurements) are assumed. The six measurement sets are given 

by (35)-(46). 
 �7I = �1.96 1.95 1.94 1.92 1.90 1.86�>� (35) �6I = �0 5.4 10 15 16.4 17�>� (36) 

 �7. = �1.96 1.95 1.94 1.74 1.39 0.91�>� (37) �6. = �0 5.4 10 17.8 19 20�>� (38) 

 �7" = �1.96 1.95 1.94 0.8 0.31 0�>� (39) �6" = �0 5.4 10 20.2 21 21.5�>� (40) 

 �7- = �1.74 1.39 0.91 1.92 1.90 1.86�>� (41) �6- = �17.8 19 					20 	15 16.4 17�>� (42) 

 �7� = �1.74 1.39 0.91 0.8 0.31 0�>� (43) �6� = �17.8 19 						20 20.2 21 21.5�>� (44) 
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 �7� = �1.92 1.90 1.86 0.8 0.31 0�>� (45) �6� = �15 16.4 17 20.2 21 21.5�>� (46) 

Each measurement set is used in the curve fitting step presented in 

Section III-A to estimate the six parameters,	�,	�5,	�8,	�9 ,	�, and ��. Then, each set of the six parameters is used in the IUKF to 

estimate the MPP for each given measurement set. The initial 

estimated state covariance for each measurement set is 	℘y = 25. 

The pseudo measurement noise covariance is ℜ = 10,-, the 

process noise variance is � = 10,I�	V. , and the maximum 

number of iterations for the IUKF process is 10000. Figures 6 

and 7 show the I-V and P-V plots for the six sets of 

measurements. It is desired to have small variations in the output 

power while collecting the six measurements necessary for 

estimation. Fig. 6 shows that the power fluctuation is between 

0-40W for the six measurement sets. Measurement sets 3 and 4 

have the lowest power fluctuations among them.   

  
Fig. 6: I-V plots for measurement sets 1 (a) to 6 (f), respectively. 

 
Fig. 7: P-V plots for measurement sets 1 (a) to 6 (f), respectively. 

Simulation results are listed in Table 2. Table 2 shows 

comparisons between the estimated optimum voltages, 

maximum power outputs, cell temperatures and solar irradiances 

for the six sets of measurements. The results from Table 2 show 

that, in general, better estimates are obtained when the 

measurement points cover the majority of the I-V curve. In all 

cases, the error in the estimated optimal voltage is less than 3%. 

Both the cell temperature, Tc, and the solar insolation, G, shown in 

Table 2 are estimated using the curve fitting approach. In addition, 

Table 3 compares the other four estimated parameters using the 

curve fitting method. Because the four parameters vary with 

respect to both cell temperature and solar insolation, the true value 

of each parameter is unknown. Table 3 shows that the variance of 

the estimated ideality factor and estimated series and parallel 

resistor, is around 10%. However, due to the fact that the reverse 

saturation current is very small, the variance of �A�  among 

measurements is relatively large. 
Table 2 Comparison between estimation results and actual values. 

No. of 

Measurement 

Sets 

Vopt, V Pmax, W Tc, K G, W/m2 

1 17.35 32.27 291 597 

2 17.04 31.59 298 595 

3 16.75 30.63 300 594 

4 17.01 31.26 312 576 

5 16.53 32.62 303 639 

6 16.77 31.55 298 604 

TRUE 17.00 31.54 298 600 

Table 3 Estimated parameters using curve fitting 

No. of 

Measurement 

Sets 
�: �A�, A �B8, Ω �B5 , Ω 

1 1.15 3.05 x 10-9 0.898 594.22 

2 1.08 1.00 x 10-9 0.739 602.99 

3 1.21 8.06 x 10-9 0.878 544.31 

4 1.12 1.00 x 10-9 0.633 575.68 

5 1.21 6.84 x 10-9 0.924 616.15 

6 1.09 1.00 x 10-9 0.966 583.50 

 

     Fig. 8 shows that all the estimated optimum-power voltages 

are close to the true maximum power voltage. In reality, all 

operating points lie on the true power-voltage curve, however, 

due to error in the estimated parameters, the estimated power is 

off the true curve by a few points. The error in the estimated 

optimal voltage is limited to 3%. When carrying out the 

experiment in reality, the output power at any of the estimated 

optimum voltage points will be on the true P-V curve. So, we 

can define the modified estimated optimal power (MEOP) at 

each point as the power at the estimated optimal voltage as read 

from the true P-V curve. As can be seen from Fig. 7, the error 

between the MEOP and the true optimal power point is less than 

0.5W. 

 

V. EXPERIMENTAL RESULTS 

    In order to validate the proposed technique’s effectiveness, 

a practical setup is arranged. Fig. 9 shows details of the 

experimental setup. A 32-bit, 150 MHz digital signal controller 

TMS320F28335 is used as the main controller. The power 

circuit is basically a boost converter with parameters listed in 

Table 4. In order to show that the proposed Kalman filter based 

MPPT can achieve satisfactory practical results at different 

environmental conditions, the PV array in the previously 

described experimental rig is forced by the boost converter 

controller to run at six different points on its P-V curve. When 
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the steady state is reached at each point, the corresponding array 

voltage, array current and array power are stored. 

 
Fig.8: True P-V curve and the six estimated Vopt-Pmax points. 

 

 
Fig. 9: Experimental test rig, Texas A&M university at Qatar outdoor atrium 

 

Table 4: Experimental setup components list 

Element 
Manufacturer and part 

number 
Value  

Inductor 
Coilcraft  

DMT3-402-3.7L 

402µH,  3.7A 

Toroidal power choke 

Capacitor - 
3x1200µF,  35V  

electrolytic capacitors 

Diode  
ON semiconductors  

MUR405  

50V,  4A  

ultrafast recovery diode 

IGBT 
International Rectifiers 

IRG4BC20UD 

600V,  6.5A 

IGBT with ultrafast 

recovery diode 

Load  
LONG battery 

WP18-12 

2x12V  

connected in series 

PV array 
KYOCERA 

KC50T 

54W  

Solar panel 

 

Then, applying the proposed Kalman filter based MPPT 

technique yields the optimum operating voltage that corresponds 

to the maximum array power. After that, the boost converter 

controller forces the PV array to run at this optimum operating 

array voltage. These previously mentioned steps are repeated at 

different time intervals (creating five sets, from Set 1 to Set 5) all 

over the day to achieve testing of the proposed Kalman filter 

based MPPT at different insolation and temperature conditions. 

Fig. 10 shows the block diagram of the experimental setup while 

the software flow chart is shown in Fig. 11. Fig. 12 shows the 

experimental results of the proposed Kalman filter based MPPT 

for various environmental conditions. It can be shown that the 

proposed technique is capable of approaching an operating point 

very close to the optimum operating point that corresponds to the 

maximum power. A slight deviation occurs, although minimal, 

in the experimental results, mainly because of the measurement 

error and the fact that while the six measurement points are 

taken, the sun movement creates varying insolation levels and 

temperature variation during the measurements which are not 

compensated in the proposed technique. Moreover, despite the 

errors due to PV parameter estimation, the experimental results 

show promising performance and accurate tracking. 

 

Fig. 10: Experimental setup block diagram 

 
Fig. 11. software flow chart 
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Fig. 12: Experimental results P-V curves 

 

VI. CONCLUSION 

 In this paper, an Iterated Unscented Kalman Filter based 

MPPT technique for PV applications has been presented. The 

proposed technique is generic, adaptive and does not require 

neither pre-set constants, like other P&O techniques, nor curve 

scanning, like other hill climbing techniques. Only six operating 

points on the PV curve are required as inputs to the proposed 

technique. The proposed method in this paper can be applied on 

any PV system using the corresponding PV array data sheet. The 

filter derivation and governing equations have been illustrated in 

detail. Simulation results for various operating points have been 

carried out. An experimental setup has been developed with 

practical results at various irradiance conditions to validate the 

proposed technique’s effectiveness. 
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