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Optical fibers are always coated with a protective jacket to secure them

against external ferces. If the thermal expansion ccefficicnt of the coating

myterial is larger than chat of the fiber , thermal buckling is caused by

compressive force exerted on the fiber as its cperating tempersture decreases.

Calculations have shown that there must exist other sources of coBpressive

stroin for the fiber o buckle, We study che microbending mechanism as a

possible source of added lesses at low temperaturcs and then investigate the

parameters Chrough which such a loss can be minimdzed,
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# dual cozced fiver nas a soft inner primary cesting to withstand the
lateral stresses end an outer robust secendery laver to allew handling.
A cemperatzre drop trom T, o Tf will cause a thermal =zcrain, £, That
iz relatef coc che fiber thermal expansion coefficient, Gpy by

T

St =’J~Jrf{':=uf1'"'lt‘1'=1T : L1

whers O 57 (s the effeccive chermal expanzion cosffizicnt of the coate:d

fiber defized through

- : 29
eff T T o ! (2

as A end £ are the cross sectional area and the modulus of elasticity

P th y
O The | — 20Ratituent material, regpeccively,

An equilibrium cquation for the forces in the optical fiber ac low

temperatures is given in terms of y, the optical fiber deformation
generated by the jacket compressive force, F, as

1

U, o
EfIFl—aL+F—d—i~rr::.r-0. . (3)
dz dez

where the smbescript f denotes the fiber and k is the spring constant

defined by che follewing couation [ 1 ]

i il = &
e ﬁ?’.LD{l dpj[ﬂ- ':'pj 4D
ri _Tg
o e e o S T T S S
P F ¥ rp + rf

with o the Foisson ratic, r the radius, aml the subacript p stands for
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the primary laver. Assuming che deformacion to have che form

nz o

y =Csin {5

, {3l

where C is acomstant chat is proportional to the temperature, z is the

axiol distance, and F iz che wave pitch, one can pet the minimum focce

to couse buckling from Eq. (33 . This force has been found to be

: (&)

13
e, = (53¢ ) (7

When the fiber buckles it acquires acertain curvature chat is deacribed

by & fiber bending radiuvs, p , that iz determined from

b
T gE. &
] 2 E,En:

where 24 iz the strain difference betwesn the fiber aad the coating and

it iz defined with the aid of Eqz, (1) and {7}

Eg = By - £, s . (9]

For single mode fibers, the bending ioss, a, per wnlt of length of the

fiber is given by the following formula [2] wsing the value of curvature

found with Eq. (8]



[
L |

ok exp |- %‘ﬁh':‘r'l.-rﬁz:l? it
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wiere B is the propagzcion constant, vV is the normalized Erequency, k

and ¥ are che cransverse propagaticn constancs for core and cladding,

= . o , th 3
respecTively, and hn {xy iz the modified Bessel ifunction of nm— order.

The subseript ¢ marks ogut che core,

The pormalized frequency and the propagacicn constants =ay be found for
the type of Eiber under invescigation; that is the biquadracic - index

tvpe.  Eguations (8F and {103 cxplain how the physical parsmeters of

the fibes ean affecc the cransmitted power through a dval-coated fiber.

The fiber wnéer expminmation iz chosen to be made of salica, primary

and secondary layers are, respeoctively, made ifrom silicon and nylon.

4 general result that praves the microbending role in the additienal

less is that with the decrease of p
b
Hewever, not a1l the scudied paramecers has

; or che increase of deformaticon:

sdditional loss incroases.

the sace effest. Figuers 1,7,and 3 show the effect of the fiber,primary,
and secondary radii, respectively, on both o and a. These results
prove the importance of suitable seleccion ;? the layers thicknesses.
The fiber's ocuter dismerer nas to be relatively thin while the primary
and secondary lavers have to be substantially thicker with a specisl

importance for the primary onc, These results are in pood agresnsnt

with the simple bending model and with the previpusly reported results [3].

Eeferences
[1)] D.C.L. Yangheluwe, Appl.Opt., 23, Mo 13, pp Z043 - G, 1984,
[ 2] D. Marcuse, J.0Opr.Sec.h=., &6, p 216, 1976.

{3] ¥. Eatsuynma et.al., Appl.Dpt., 1%, Ho 24, pp 4200=4205, 1980,
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ABSTRACT

Double cooated fibers display additienal transmission  logs  due ko
microbending of the liber axis at low temperatures . h proper design of
the fiber and ite coating can control the fiber deformation and suppress
cxoess los56e5.

INTRODUCTION
Cptical fibers need protection from external foroes and  this
retsuires the design of a protective Liker jarcket. The Jacket showld have

a high stiffpess ic cochination with a good lateral compressibilivy .

Had the thermal expansian coefficient of the ocoating material been

considersbly larger than that of the fiber , buckling is caused by

Ccompressive Stress exerted on the fiber when its operating temperaturs

decreases. Thiz type of deformation is <nown as thermal beeklicog .,

Caleoulated results have ipdicated kEhat thermal streain falls shor:

2% the mechanical strain, which is the minimem compressive strain that

can cause the {iber to puckle . Other sources of strain were suggested

incleding the microbending mechanism {1] . Micrabending iz a series of
random Dends in the fiker awxis that may be induced by either :ncreasing
lateral pressure on the fiber or by thermal buckling .

AN approach bo minimize microbending losees 1z to select
coating materials

aroper
accprding So theilr respective =echanical properties .
The main parameters that govern our choice are the material's modulus of

e=lasticity and thermal expansicn coefficient .

The Iollowing stwdy presents a theoretical freamment for the micro-
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FRIMARY /I

SECONDARY

s

Fig.l. Doubie - coated optical fibexr .|

Dending prozlem of a Biguadratic - index dual - coatest
are

fiter Dual coatings
introduced to reduce the effects of lateral pressurs by bulfering

the fiber with a zoft inner primary layer; the outer secondary lawver is

hard ang robust to allow handling |

THERHAL BUCELIKG

& dual - coared fiber, Fig, 1, has a primacy coakbing layver that s

chopen from a suitable maeterial, e,g. silicon, o cinimize lateral

pressurss, while the secondary laver has' a mainly grotective function

against harndling problems .

The different themmal expansicn coefiicients of the fiber and its

cn:-atings can e consScolidated inta an effpcSive prpansion cocllicient,

l:p-f"' deofines oy the ruele of masctures [2] as o
iﬂ‘.hl}:l [1:
a an : v
eif 10y E
;e s |
where e _denotes the thermal expansion ccefficient , A, is the cross-

th

sectional area and E, is the Young's modulus of elastsicisy of the 1 —

material .

The thermal strain Et is related to the temperature changs from

Tga & ztandard Semperature, to a final temperature, T, by :
T :
I L
E = a -{1 .1 &T [z
= T, Magr "0y .
wWhere 1, denctes the thermal expansion coefficrent of the fLiber . Since
the ¥Young'z modulii of The coating materials are xonown o depend on

temperature, the integration of Eg. 2 is to be perfarmed numerically onos
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the temperaturc dependence is clarified,

MECHANICAL BUCKLING

The fiber may buckle because of a compressive strain and Shes

follows = helfzal path. Using the theesy of clastic stability, a force

and moment balance yields the differential eguaticn (3]

dh A¥s
E Il tF—f vy = 0 e
T dz" i
wnere v is the deflecticn af the fiber as a function af the distance =
a@long itz length. The parameters E_ , I , amd F

P oare, respectively.the
Toung's modulus of the fiber , the geometrical moment of inertia of the

-

fiber and the compressive force on the fiber. The spring constant ¥ is

defined as the centring force exerted by the coating to the Sisplacement
of the finer from che conter.

It i= deteesmined from [4]

aTE [1-wv 1{3=Adw }
o o e o)

H

e
L
a

z
L

1

: L PR
[1*UJ[[¢—4U‘J1n{r—]— ; =
7 P f B gl
whore 1, is the radius of the fibec, 1, EP- and Y_ are, respactivelsy,
4 =

the primary radiwes, Young's modulues and Baisson's ratio .,

The buckling selution &f Eg. 3 has the form :

27 % ]
2]
where C iz an arbitrary constant that is directly

-

;,-=':5in|:

: (5}

CEODOrCicnal to The

temperature, and P ois the helicalls pitch. Back substitution to Eg. 3
JqLrven
2 el
2m P e
F-REI[P:I‘-R:LEHJ ; L6

fréc which one can get the minimum buckling force as -

F =2¢zE.c) = ione e} e
“min S =E ok ;
This corresponds £o a minimum pisch of
amE
£yt
B .. =T 8
min rf I: ® ] ! L
and 2 mipimum mechanical compressive strain s
(4 + G018
e = | I ;
m TE
E -
hgain one may notice that through the dependesceiof € on T the

=) e
+
mechanical strain, ¢ » 15 o function af temperaturs ,

-
-
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Fig.2. fiber bending model to evaluate lass INZSESASE .

FIBER RENDING XADIUS

Figure 2 represents a simple model of fiber bpends wien it exhbibits
a temporature drog. It iz aszsumed that the [iber berds due to the cooling

coptraction difference batween the pricary coating and the fibker .

when
a spiral bend ococurs, the bending radiws Py in given by :
o = g (10
cos”

where B is the spiral radiuz and &

=Y

in the angle between the fiber and
the line normal to the central axis .

When the fiber bPuckls, the strain difference, E.dl tetween the

fiber
apd the ooating is related To § by s
By m e T e, sooest b ; {11 ]
Zinee & iz almost a right angle, the [ollowing aporoximation holds @
[=]
T - — ‘ (12
tan ¢ ZTR
and the radius B iz related 1o the spiral pitch 8 By @
o |
= —= : ; {131}
R T z Eﬂ 1
Uzimg Egs. 5, 11 and i2 an Eg. 14, one can get :
r me
o, = =& [—=1 : {14 )
E 2 o
il
LOSS THCREASE AT LOW TEMPERATURE
For single mode fibers, only the Cfundamental LB, —=ece 12

propagating within the fiber., Thereforce, the loss coefficient GDI for
this mede 15 given oy [31 4
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¥l exp _1pr3 /3B 3

iy i

. viyo R
Y o R L 1= } % [ AL 1
where B is the axial propagation constant, Y and L are, respectively,

the transverse propagation constants in the core and cladding, ¥ 1 iz
s
are the modified Bessel functions, V is the normalized Freguensy and r

is tThe core radius .

It is concluded that the fiber bending model and the curvature

lass formula, Eg, 15, can represent the loss increase characteriss=ics of

a dual - coated single -mode fiber due to cooling .

EESULTS AND DISCUSSION

Eguations 14 and 15 explain how the physical parameters af the

fiber can affect the transmitted power throwgh a dual - ccated fiber, The
Tiber under examisation is chosen Lo be made af silice with primary and
secandary ooatings which ase made

respeccively , of silicon and aylon
layers.,
As menticned before ., the modulii of elasticity of the coatings

change drastically ower the range of opperating btemperatures . We have

abtained theic values for a wide range of temperatures from the published

experamental data [E]. The best fitting formulae for these results were

Sownd to be :

Ep{T]=l‘ﬂ14—ﬂ.DzT r [la]

and

— -
EE[TJ = 1216 - 9.77T + 0,03 T2 + 0.0177% - 4.0wi0 TY- 2.5xig . =3

- -4 - = 10
+4,3%10 T +@meax1o T - pawxio 0 B

. {17}
WhErE EEI is the young's modulus of the secondary Layar,

When T Ls given
in ", E_ {T? and E_(T) wiil result in megapascals . Equations 16 and
17 2re used in Bg. 2 and a computer progras has been desigoed to executo

all the numerical calculatizns. The main object is toe find the optimuwn

parameters chat will result in minimum loss inerease Sue to any temperat-
ure GIop.

We have studied a biguadratic - index profile defined by :

h 3
nipl =mn, {1 - 2ap* + map* }* ; (18)
is the axial refractive index and © and = are two controlling
rarameters,

where ng

Through this profile we have defined the propagation const-

ants needed for EBg. 15. The axial propagaticon constact 8 is calewlated
%

7y tha pertusbation theory to the third order as [7] :

Ll e e Yo o 2m 3 mi = T m P 193
p 2rik,(20)1f aul rik, :

-

2
L= L=
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The effect of the different

radii of the

investigated., A general resullt That prowes the

additicnal lasses iz that with the decrease of

the deformation, khne loss coefificient ED

alw

The importance of suitable selecticn =f

is the [ree space pProRdgATLOn Sonstant .

fiber's lawyers nave Deen

miprobending role 1m the

ﬂb .

ays ANSreases.

or the increase of

., r amgG T ism well
t P 5

observed from Figa.3 - 5. Figured depictsa reported oxporimental result

[B] which regarded a relatiwvely thick secondary ooatling as an Adegualbe
precantion ta avoid fiber buckling.

CONCLUSIONS

£l
-

their

functions.

From the foregoing results, we can draw the fellowing conclusians

The selection of the seating materials has o be made accorcing Lo

The primary layer must bo

such as silicen, ko imprint ircegularities

the secondary layer

must ke hard

external forces.

rﬂ
L]

r_* ao0 o, Figs.3=5.

o

Lerable |

¢ 200 1=, the grimary radius I

Thinner fibers Al

additional losses .

such as nylen .

made of a softr material,
in the fibero axas, while

ter withstand

To reduce the miccobending loss . one has ta choose the fiber radius

z 3 400 um and the secondary radius

thicker coatings are pre-

The pendino corvature radiuvs &b is directly related to the migrooben-

ging excess - loss, Smaller walues of the bending radiuvs rdans EIEE
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