
Route Tracking of Moving Vehicles for Collision
Avoidance Using Android Smartphones

Ehab Ahmed Ibrahim, Said El Noubi, and Moustafa H. Aly

Abstract

Android Smartphones are widely used nowadays. They have a lot of capabilities that made

our life easier and more comfort. They opened the area of Android programming used to

develop applications suitable for these smartphones. Our target, in this paper, is to propose

an application that helps in collision avoidance between moving vehicles (especially trains)

by tracking their routes. This application is a modified version of Route Tracker Applica-

tion [Harvey and Deitel (Android for programmers an app-driven approach, 2011)], we use

the Route Tracker Application on each smartphone that installed in the moving vehicle, to

track its route. Then we save all trains points in a database, construct a map shows these

points. In this map, a different color is assigned to each vehicle to distinguish it. This map is

shown on a smartphone found in a control room. Using points in this map, the distance

between vehicles is calculated (distance between points of vehicles). When two vehicles,

for example, become too closer to each other, the inspector, in the control (monitoring)

room, must take an action, he generates an alarm to warn the drivers of both vehicles so

they can adjust their speed to avoid collision.

Keywords

ADT � AVD � DDMS � KML � GPX � JSON

Introduction

TheAndroidoperatingsystem[1–4]wasdevelopedbyAndroid,

Inc., which was acquired byGoogle in July 2005. In November

2007, the Open Handset Alliance™—a 34-company consor-

tium initially and 81 now was formed to develop Android,

driving innovation in mobile technology and improving the

user experience while reducing cost. Android is used in numer-

ous smartphones, e-reader devices and tablet computers.

One benefit of developing Android applications is that it is

open source and free operating system. This allows to view

Android source code and see how its features are implemented.

One can also contribute to Android by reporting bugs or by

participating in the open source project discussion groups.

Android applications are developed with Java [5, 6]; the

world’s most widely used programming language. Java was

a logical choice for the Android platform, because it is

powerful, free and open source. Java is used to develop

large-scale enterprise applications to enhance the function-

ality of web servers and to provide applications for consumer

devices (e.g., cell phones, pagers and personal digital

assistants) and for many other purposes.

It enables to develop applications that will run on a variety

of devices without any platform-specific code. Experienced

E.A. Ibrahim (*)

Arab Academy for Science, Technology and Maritime Transport,

Alexandria, Egypt

e-mail: ehab_ahmed@aast.edu

S. El Noubi

Faculty of Engineering, University of Alexandria, Alexandria, Egypt

e-mail: saidelnoubi@yahoo.com

M.H. Aly

College of Engineering and Technology, Arab Academy for Science,

Technology and Maritime Transport, Alexandria, Egypt

e-mail: mosaly@aast.edu

K. Elleithy and T. Sobh (eds.), New Trends in Networking, Computing, E-learning,
Systems Sciences, and Engineering, Lecture Notes in Electrical Engineering 312,

DOI 10.1007/978-3-319-06764-3_81, # Springer International Publishing Switzerland 2015

629

mailto:ehab_ahmed@aast.edu
mailto:saidelnoubi@yahoo.com
mailto:mosaly@aast.edu


Javaprogrammers canquicklydive intoAndroid development,

using theAndroid (Application Programming Interfaces)APIs

and others available from third parties.

Java is object oriented and has access to powerful class

libraries that help in developing applications quickly. One can

write applications that respond to various user-initiated events

such as screen touches and keystrokes. In addition to directly

programming portions of applications, one may also use

Eclipse to conveniently drag and drop predefined objects

such as buttons and textboxes into place on your screen, and

label and resize them. Using Eclipse [7] with the Android

Development Tools (ADT) Plugin, one can create, run, test

and debugAndroid applications quickly and conveniently, and

one can visually design his user interfaces.

Application Model

Our developed application depends mainly on Google Maps

and Route Tracker Applications (discussed in next sections).

We install a smartphone in eachmoving vehicles, on the phone

we displaying a map that shows the vehicles moving points.

Another map is used to show points of all vehicles. We used

Google Maps Application to perform the following tasks:

1. Show a Google Map on each smartphones.

2. Locate the vehicles points on the map.

3. Add markers to these points (one marker for each point

with the ability to use different markers colors for differ-

ent points).

4. Drawaline thatconnectsall thesepoints together (routepath).

At this stage, we completed an easy but very important

task. Now, we become familiar with Google Maps and can

deal, easily, with it. Then we move to the Route Tracker

Application. This application targets to track only one route

(for one moving vehicle).

To avoid collisions, we need to track routes for more than

one vehicle (at least two), so we need to modify the Route

Track Application to fit in our situation. We install the Route

Tracker application for each smartphone, then collect the

points of each vehicle (these points are the Route Tracker

output) and save them on a database.

Finally, we show these points on a map that can be

accessed by the vehicle driver, thus all drivers have an over-

view of the routes of other vehicles. If any sudden change

occurs in any vehicle path, it updated automatically to all

vehicles, so drivers can take a fast action towards this change.

Google Maps Application

Google Maps is one of the many applications bundled with

the Android platform. In addition to simply using the Maps

application, one can also embed it into his own applications

and make it do some very cool things. This Android Google

Maps application [8] shows how to use Google Maps in

Android applications and how to programmatically perform

the following:

• Change the views of Google Maps (street and satellite

view).

• Display a Particular Location on the map.

• Display the Zoom Controls.

• Obtain the latitude and longitude of locations in Google

Maps.

• Perform geocoding and reverse geocoding.

• Add multiple markers to Google Maps.

Obtaining a Maps API Key

One needs to apply for a free Google Maps API key before

he can integrate Google Maps into his Android application.

API version 2 is already in use today but for application in

this paper we use API version 1.

Displaying the Map

To display the Google Maps in Android application, modify

the main.xml file. One shall use the <com.google.android.

maps.MapView> element to display the Google Maps and

modify main class to extend from the MapActivity class,

instead of the normal Activity (Fig. 1).

Displaying a Particular Location

By default, the Google Maps displays the map of the United

States when it is first loaded. However, one can also set the

Google Maps to display a particular location.

Getting the Location That Was Touched
(Geocoding)

After using Google Maps for a while, one may wish to know

the latitude and longitude of a location corresponding to the

position on the screen that one has just touched. Knowing

this information is very useful as one can find out the address

of a location, a process known as Geocoding.

Adding Multiple Markers to Google Map

The objective is to add multiple markers to Google Map

Application for Android. One may take a scenario where

having a list of coordinates of different points and wants to

display a marker on each point.

630 E.A. Ibrahim et al.



One must add a class that extends ItemizedOverlay which

consists of a list of OverlayItems. This handles sorting north-

to-south for drawing, creating span bounds, drawing a

marker for each point, and maintaining a focused item. It

also matches screen-taps to items, and dispatches focus-

change events to an optional listener.

Drawing a Path or Line Between Several
Locations

The objective is to draw a line between two points on Google

Maps let’s say point “A” and point “B”. Repeat the process

to draw a line between point “B” and point “C”.

Route Tracking of Moving Vehicles

First, to run this Route Tracker application or to create your

own application using the Google Maps API, you’ll need to

obtain a unique API key from Google. Applications must be

signed with a digital certificate before they can be installed

on a device. When you are building and testing applications,

the ADT Plugin handles this automatically by creating a

debug certificate and using it to sign your applications.

An Android device (such as smartphone) must be

installed on the moving vehicle that one wants to track its

route. This smartphone must have internet access to receive

the map images, to acquire a GPS signal, the smartphone

must have line-of-sight with the GPS satellite (the signal can

take several minutes).

Once the Route Tracker application is running on the

smartphone, and a GPS signal is received, a Toast appears

on the screen saying that the GPS signal has been acquired.

At this point, touch “Start Tracking” button.

As the vehicle moves, its route is marked with a red line.

Open the application’s menu and touch the Satellite item to

display a satellite image rather than a standard street map.

One can switch back to a street map by selecting the

menu’s Map item. When the vehicle is stopped (have fin-

ished its route), touch “Stop Tracking” button. Touching

“Start Tracking” again erases your route from the map and

starts tracking a new one (Figs. 2, 3, and 4).

Then, one can extend the process of route tracking to

more than one moving vehicle (two or more). For each

vehicle, a smartphone must be installed and connected to

internet and GPS Satellite.

We can use this approach in railway stations for tracking

the routes of trains. For example, take a scenario of two

trains tracking. A map is displayed on a smartphone on

both trains. The first train positions are drawn on the map

as blue balloons. The map is updated periodically with each

point the train reaches. For the second train, points are drawn

as a red balloons. The map on each train is showing its route.

When the other train reaches a station (new point), the map is

updated to show both train locations on the same map. So

each train driver has an information about the current state.

He can take a decision if any unusual event occurs. For

example, if second train becomes closer, he must slow

down and send alarm to this train. Also if one train is stopped

suddenly, the train driver must send an alarm to all other

trains to pay attention. Another situation is when a train gets

close to a station or a crossing, the driver must be aware of

that to slow down its speed.

A third map is displayed on a smartphone on a control

room showing trains routes. The inspector on the control

room also has the ability to take action such as open or close

station barrier, send a signal to all other trains to slow down

Fig. 1 Displaying Google maps Android Application

Route Tracking of Moving Vehicles for Collision Avoidance Using Android Smartphones 631



or completely stop until a crossing situation is perfectly

handled. By this procedure, one can avoid (or at least

decrease) collisions between trains and improve the safety

factor of the train railway network.

Simulation Procedure

This simulation is carried out in an Android Virtual Device

(AVD) [9] which is configured to use the Google APIs.

Sending GPS Data to an AVD

The Android emulator enables to send GPS data to an AVD.

So, one can test this application without an actual Android

smartphone. One can send a single point (latitude and longi-

tude) manually Using Dalvik Debug Monitor Server

(DDMS) [10]. Actually, sending only one point is not suit-

able for tracking moving vehicle. So, one needs a series of

points to really simulate a GPS data.

One can use a (KeyholeMarkup Language) [11] file (file

with kml extension) that can be generated by simply drawing

the desired routes on Google Earth software, save it in kml

format and then convert this Google Earth routes to a format

suitable for Eclipse Android ADT plugin using google earth

to android ADT tool (http://ge2adt.applicationspot.com/).

This method has a drawback that the kml file contains

only points but without their times (points are located on the

Map all at once). So, one needs another way to take the

factor of time into consideration so as to perfectly simulate

GPS data.

To do so, one shall use a file containing GPS data in GPS

Exchange Format. Such files typically end with the gpx

extension and are called GPX files that one can load and

“play” from the ADT Plugin DDMS perspective.

Fig. 2 Adding markers and geocoding

Fig. 3 Drawing a route path between three points

632 E.A. Ibrahim et al.

http://ge2adt.applicationspot.com/


To generate these files, one can do the same steps of

creating kml file, draw the desired routes on Google earth,

save it in kml format and then convert this kml file format to

gpx file using gpsbabel tool (www.gpsbabel.org). Note that,

Android emulator uses GPX version 1.1 format data (Ver-

sion 1.0 is not supported).

For our case of tracking two (or more) trains, we will have

more than gpx file (one for each train) and need to add a

point for each train according to its gpx file. To work with all

these files we need to organize them and save their points on

a database. This can be performed using a WAMP server.

WAMP is acronym for Windows, Apache, MySQL and

PHP [12, 13]. WAMP software is one click installer which

creates an environment for developing PHP, MySQL web

application. By installing this software you will be installing

Apache, MySQL and PHP.

The Android application and a remote MySQL database

cannot communicate with each other directly without inter-

preter. This interpreter will be PHP. The process in a visual

form would look like this (Fig. 5):

To accomplish our developed Route Tracking application

we must go through these steps:

1. Creating MySQL database containing one tables with

fields (point id, point latitude, point longitude, train num-

ber, and point time).

2. Connecting to MySQL database using PHP. Using PHP

statements to export the table data into an XML format

that map can retrieve through asynchronous JavaScript

calls.

3. Adding a row in MySQL database corresponding to a new

point, storing its latitude, longitude, train number and

time of point generation.

4. Reading all rows from MySQL database to display all

points on the map.

5. Creating the Android application that connect all these

components together.

Simulation Results

In this paper, we simulated a crossing scenario of two trains.

A hypothetic route is chosen for each train (a route of four

points or stations). The present Android application is a

modified version of Route Tracker application discussed in

section “Google Maps Application”. In each train we run the

ordinary Route Tracker application, save points to MySQL

database. The map shows the route path until other train adds

another point in the database. At this point, the map changes

(using intent) to another view showing points of both trains.

After a sufficient period of time (permits the driver to under-

stand other train situation) the map returns again to its

original view (original train route path).

Another map is shown on the central room. It is a

webview activity, its source is a PHP file that reads all points

from database and locates them on a Google Map

distinguishing between train one and train two points by

using different markers for each train. It always shows

both trains routes.

The distance between trains is calculated using informa-

tion about the trains’ points (latitude and longitude) which

are read from database. We use the Haversine form to

calculate the distance from points coordinates (Figs. 6, 7,

8, and 9).

Fig. 4 Route path of one vehicle (street view)

Fig. 5 Android—MySQL communication process

Route Tracking of Moving Vehicles for Collision Avoidance Using Android Smartphones 633

http://www.gpsbabel.org/


We put a distance of 5 km as a threshold. If the distance

between the two trains becomes less than 5 km, an alert is

generated (as shown in Fig. 8). The distance between trains

is calculated periodically with each point update, and the

check of 5 km is also repeated until all points are read from

database.

Conclusion

In this paper, an application is developed that aims to

participating in avoiding or decreasing the rate of collision

between moving vehicles (in our simulation we worked on

trains because the number of collision between trains is very

large indeed). To achieve our goal, we start with Google

Maps Application that, simply, displays a google map on

Android phone, then, zoom controls are added to the map.

After that, we add markers for particular locations, and

draw a line connecting the points drawing on the map. Then

we move to Route Tracker Application that is already devel-

oped. We Display a map showing the route path of each train

on a smartphone located in the train. This map is updated

with points of the other train periodically. As Route Tracker

Application is developed for tracking path for only one train,

we need to modify this application to be suitable for tracking

two or more trains.

To do so, we save the points of each train route in MySQL

Database to construct a map showing routes of all trains (by

locating points of all trains on this map). This map is

displayed on a central (control) room.

If the two trains become close to each other (we took a

distance of 5 km as a threshold), the smartphone generates

an alarm to warn the drivers. The inspector on the control

room must take an action based on this alarm. He must

inform both drivers to adjust their speed to avoid collision.

Using this technique, we can decrease the collision rate

between trains and improve its safety factor.

Fig. 6 Route path of train 1 (Map 1 view) Fig. 7 Route path of train 2 (Map 2 view)

634 E.A. Ibrahim et al.



References

1. Paul, Harvey and Abbey Deitel, “Android for programmers an

app-driven approach,” 2011, pp. 291-319.

2. http://chrisrisner.com/31-Days-of-Android, accessed 28-10-2013.

3. Wei-Meng Lee, “Beginning Android 4 Application Development,”

Wrox, 2012, pp. 251-292, 351-392.

4. Mark L. Murphy, “Android Programming Tutorials,”

CommonsWare, 2011, pp. 1-27.

5. http://www.ntu.edu.sg/home/ehchua/programming/java/J2_Basics.

html, accessed 8-11-2013.

6. “Sams Teach Yourself Java in 24 Hours (Covering Java 7 and

Android)”, 6th ed., Sams Publishing, 2012, pp. 4-102, 343-371.

7. http://developer.android.com/sdk/installing/bundle.html, accessed

20-10-2013.

8. http://mirnauman.wordpress.com/category/android, accessed 25-

10-2013.

9. http://codebutler.com/2012/10/10/configuring-a-usable-android-

emulator, accessed 1-11-2013.

10. http://developer.android.com/tools/debugging/ddms.html, accessed

5-11-2013.

11. http://en.wikipedia.org/wiki/Keyhole_Markup_Language,

accessed 5-11-2013.

12. http://www.androidhive.info/2012/05/how-to-connect-android-

with-php-mysql, accessed 8-11-2013.

13. http://www.mybringback.com/tutorial-series/12924/android-tuto

rial-using-remote-databases-php-and-mysql-part-1, accessed 9-11-

2013.

Fig. 9 Action is taken, each train completes its path (Control Room

Map)

Fig. 8 Alarm generated when distance is less than 5 km, action is

required (Control Room Map)

Route Tracking of Moving Vehicles for Collision Avoidance Using Android Smartphones 635

http://chrisrisner.com/31-Days-of-Android
http://www.ntu.edu.sg/home/ehchua/programming/java/J2_Basics.html
http://www.ntu.edu.sg/home/ehchua/programming/java/J2_Basics.html
http://developer.android.com/sdk/installing/bundle.html
http://mirnauman.wordpress.com/category/android
http://codebutler.com/2012/10/10/configuring-a-usable-android-emulator
http://codebutler.com/2012/10/10/configuring-a-usable-android-emulator
http://developer.android.com/tools/debugging/ddms.html
http://en.wikipedia.org/wiki/Keyhole_Markup_Language
http://www.androidhive.info/2012/05/how-to-connect-android-with-php-mysql
http://www.androidhive.info/2012/05/how-to-connect-android-with-php-mysql
http://www.mybringback.com/tutorial-series/12924/android-tutorial-using-remote-databases-php-and-mysql-part-1
http://www.mybringback.com/tutorial-series/12924/android-tutorial-using-remote-databases-php-and-mysql-part-1

	: Route Tracking of Moving Vehicles for Collision Avoidance Using Android Smartphones
	Introduction
	Application Model
	Google Maps Application
	Obtaining a Maps API Key
	Displaying the Map
	Displaying a Particular Location
	Getting the Location That Was Touched (Geocoding)
	Adding Multiple Markers to Google Map
	Drawing a Path or Line Between Several Locations

	Route Tracking of Moving Vehicles
	Simulation Procedure
	Sending GPS Data to an AVD

	Simulation Results
	Conclusion
	References


