
 

 

Optimization of triangular lattice defect in dynamic photonic crystal 
structures for optical storage and processing 

  
Mostafa Shalabya, A. K. AboulSeouda,b, Moustafa H. Alya, Amr Marzoukc 

aArab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt 
bUniversity of Alexandria, Alexandria, Egypt 

cSimon Fraser University, Surrey, Canada  

ABSTRACT 

A triangular lattice GaAs photonic crystal structure was proposed in a previous work [1] for optical storage in a dynamic 
modulation process. This work presents a defect optimization of this tunable coupled resonator array. Preserving 
translational invariance and adiabaticity, this structure exhibits an optical analogue to electromagnetic induced 
transparency. This triangular lattice structure shows an advantage over the previously proposed square one [2, 3] in 
compressing higher bandwidth pulses. The main problem of this structure is the introduction of higher group-velocity 
dispersion. In the present work, the structure is redesigned so as to change the operating range of frequency for the 
propagating pulse. In this way, the group-velocity dispersion is eliminated to values close to that of the square lattice 
structure. The final design, therefore, combines both higher compressible bandwidth and lower group-velocity dispersion 
in addition to a fabrication advantage. 

Keywords: Dynamic structures, temporal coupled mode theory, optical storage, group-velocity dispersion, triangular 
lattice, refractive index modulation. 
 

1. INTRODUCTION 
Development of dynamic structures for optical storage represents one of the recent advances in the area of photonic 
crystals. These structures make good use of the fascinating properties of photonic crystals in controlling light. A tunable 
coupled resonator array structure was proposed for dynamic tuning of the bandwidth of optical pulses [3]. In this 
structure, the bandwidth is adjusted to be large enough to accommodate the optical pulse. When it is completely inside 
the structure, the transmission properties of the structure are tuned dynamically. Under appropriate conditions, the 
bandwidth of the pulse can be reduced to zero. By cascading such tunable band pass filters, it is possible to reduce the 
velocity of a propagating pulse to zero and even to time reverse it. The pulse can then be kept in the structure 
indefinitely. This process can then be reversed and the pulse is released. The system therefore behaves as both a tunable 
band pass filter and a tunable delay element [3]. This stop-freeze-release process allows for new possibilities for optical 
storage and processing.  
 
The original structure used to validate the theory is based on a two dimensional square lattice structure [3, 4]. In a 
previous work [1], a triangular structure was suggested instead. This triangular structure offers an advantage over the 
square one. It represents a better approximation to the ideal case of spherical Brillouin zone in two dimensions. This 
structure shows higher capabilities for bandwidth compression [1] especially when used with GaAs. However, this 
structure has two main disadvantages; it requires a longer waveguide length and it shows higher group-velocity 
dispersion. While the former can be compromised with the required system specifications [1], the latter needs more 
consideration. In the present work, the triangular lattice dynamic structure is revisited. The original model is redesigned 
so as to reduce the group-velocity dispersion while maintaining higher bandwidth compression capabilities. 
 
Figure 1 shows two unit cells of the basic system for light manipulation. Each unit cell consists of a waveguide side 
coupled to two cavities [5]. The two sufficient conditions for dynamic refractive index modulation are the translational 
invariance and adiabaticity [5-7]. It has been shown [1] that using a triangular lattice instead of a square one will not 
violate any of them. The single mode waveguide is created here by removing a single row of dielectric rods. In previous 
works [1-3], the single mode cavity was obtained by reducing both refractive index and radius of a single rod. By 
modulating the refractive index of this system, the resonance frequencies of the unit cell cavities can be varied creating 
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two cavities (in each unit cell) with resonance frequencies of ω1,2=ωo±δω/2 [6], δω is the signal bandwidth. In both 
square and triangular lattice structures, both cavities have the same symmetry and the system supports nonorthogonal 
modes [8]. This system exhibits an electromagnetic induced transparency.  
 

 
 

Fig.1. Schematic of two unit cells of the coupled-cavity structure used to stop light. The cavities couple to the waveguide 
with a coupling rate of 1/τi. Length of the unit cell is l = l1 +l2 [3]. 

 

2. TRIANGULAR GAAS LATTICES 
The original system used to validate the theory is based on a square lattice with a dielectric constant of 12.25 [3]. The 
triangular lattice GaAs structure, suggested in a previous work [1], shows some advantages over the original one. These 
advantages are summarized below: 
 

2.1 Effect of the triangular lattice 

At the same background dielectric constant and center frequency, the triangular lattice shows an advantage of 
compressing larger bandwidths than that of the square one. In addition, the ratio of the final bandwidth (after 
modulation) to the original bandwidth (before modulation) is to the advantage of the triangular lattice. The reason for 
this behavior is two-fold [1]: first, because the photonic bandgap in the case of a triangular lattice is wider than that in 
the case of a square lattice, an introduced defect mode at the middle of each gap is more localized in the case of a 
triangular lattice. The evanescent modes in the gap of the structure have exponential nature and they share the same final 
value of leaking into the extended bands. Therefore, any deviation, represented by the refractive index modulation, is 
more effective in the case of the triangular lattice. This results in a wider pulse bandwidth to compress. The other factor 
arises from the fact that the mode is better localized in the photonic bandgap of the triangular lattice because it is wider 
than the square one. A better quality factor is, thus, obtained in the case of the triangular lattice. Both the preceding 
factors can be introduced in the bandwidth ∆ ≡ 2Q|ω1–ω2|/ω0 leading to a higher compressible bandwidth. 
 

2.2 Effect of using GaAs 

Using GaAs (ε=11.4 at λ=1.5µm [4]) leads to a larger compressible bandwidth than that obtained if the original material 
[1] with ε=12.25 is used. Because GaAs has a lower dielectric constant, it offers narrower photonic bandgap and is, thus, 
weak at the localization of cavity modes. This weakness can result into a higher bandwidth under the following 
circumstances. For a material with ε=12.25, a large value for dielectric shift ∆ε is required for a defect mode to cross 
half the bandgap (which is large) and be introduced at the middle of the gap. On the other hand, in the case of GaAs, no 
such big effort is required because the bandgap is smaller. If the difference in the original reference value is small 
(∆ε=12.25-11.14) and it will be further reduced when the refractive index modulation is considered (∆n=3.5-3.37), the 
required dielectric constant for the defect cavity mode can be larger for GaAs (ncavity=2.42) than in the case of ε=12.25 
(ncavity=2.24) at the same defect frequency. Once the defect mode is established, the perturbation and variational theories 
can be applied. This is done in [1] and using GaAs shows a higher compressible bandwidth. 
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3. PARAMETERS OPTIMIZATION 
The previously discussed model based on GaAs triangular lattices shows two main problems [1]; the first is the 
requirement of longer waveguide lengths for the compression of the extra band. In an attempt to solve this problem, 
there are two suggested scenarios [1]. The second problem is the higher group-velocity dispersion shown in the new 
design. The objective of this work is to address this problem. 
 
In an attempt to solve this problem, the linear defect introduced in the forbidden bandgap is spanned searching for an 
appropriate range of linear group-velocity. At the same time, it should be as close as possible to the middle of the 
forbidden region for maximum localization of the defect mode. Zooming in Fig. 2 shows that a shift from the old center 
frequency ωo=0.357 (Fig. 3 (a)) to the new one, ωo=0.375 (Fig. 3 (b)) satisfies both conditions, especially when used 
with GaAs. The new range of operation shows a close approximation to the (almost) linear curve of the square lattice 
structure. All curves are calculated at the same refractive index modulation rate. 
 

 
 
 

Fig. 2 The band structure of the linear defect (due to waveguide only) for a background dielectric constant of 11.4.  

   
In order to produce no change in the center frequency of operation, the original model parameters should be redesigned; 
more specifically, the defect modes of the cavities. Moreover, by changing the center frequency, the condition for 
maximum transmission is violated and the transmission through the structure is reduced. 
 
3.1 Defect optimization 

In the previous designs, square lattice [3] and triangular lattice [1] structures, the center frequency is kept the same at a 
value of 0.357. This defect frequency is obtained by reducing both the radius to 0.1a for both structures and dielectric 
constant of a single rod to 5.8564 and 8.1796 for square and triangular lattices respectively. These calculations are done 
at a background dielectric of GaAs. In order to obtain a new center frequency of 0.375, only the dielectric constant is 
changed. The radius of the defect rod is kept untouched. This design, therefore, shows a fabrication advantage over the 
past two designs. In a GaAs background of triangular rods, reducing the dielectric constant of a single rod to 2.155 
creates a single mode cavity of a resonance frequency ωo=0.375.  
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Fig. 3. (a) The original frequency range of operation 
(ω=0.357) is zoomed in and shown in relation to the 

perfect linear mode (dashed line) 

Fig. 3. (b) The new frequency region of operation 
(ω=0.375) is, again, zoomed in for a triangular 

lattice structure. 

 

3.2 Cavities separation 

The design of this coupled resonator array is dependent on the adjustment of the system components in such a way that 
the system shows an optical analogue to electromagnetically induced transparency. For maximum transmission through 
such a structure, the separation between the cavities should be adjusted such that the following equation is satisfied: 

)(1 ω
π

B
n

=L                                                                                                                (1) 

where B(ω) is the waveguide dispersion relation, and n is an integer. Equation (1) represents a condition for maximum 
transmission in the common problem of simple parallel mirrors resonator (like Fabry-Perot etalon).  
 
An important characteristic of a photonic crystal based waveguide is that light is mainly directed in the low-ε regions 
which are usually air. As a result, the dispersion relation β(ω) can be approximated to (ω/c). This result and equation (1) 
at the operating frequency found above gives cavities separation of 4a for maximum transmission. 

4. ANALYSIS OF THE OPTIMIZED MODEL 
In order to give a comprehensive analysis of the discussed system, the transmission characteristics and band structure 
should be found. The intensity transmission coefficient, T, of this system is calculated as follows [5] [9] [10] 
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where 2θ is the round trip phase angle accumulated in the waveguide sections: θ=0.5Arg(r1r2e-2jβ(ω)l1), β(ω) is the 
waveguide dispersion. ri and ti are the reflection and transmission coefficients of the ith cavity given [5] by 
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In order to obtain the band structure of such a system, the transmission matrix should be found a priori. If Tci and Tli are 
the transmission matrices for the ith waveguide side coupled to a single resonator and waveguide section, respectively, 
(i=1, 2), the transmission matrix through an entire unit cell is found [11] to be  

2211 lclc ΤΤΤΤ=Τ                                                       (5) 
where 
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where ωi, and 1/τi are the resonance frequency and coupling rate to the waveguide for the ith resonator and 
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Using the above model, the band diagram for equal coupling rate cavities and ignoring any direct coupling between side 
cavities is found [11] to be 
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This analysis is based on the representation of the eigenvalues of T as e-jk(ω)l, and ejk(ω)l (because det (T) =1); where k is 
the Bloch wavevector of the entire system.  

5. SIMULATION RESULTS 
The transmission characteristics for the system shown in Fig.1 with the new parameters are shown in Fig. 4 (a). The 
transmission characteristics are calculated using the parameters obtained from simulating these systems and using 
equations (2) – (4) at a center frequency of ωo=0.375. Figure 4 (b) shows the band structure calculated using equations 
(5) – (9). This system exhibits three photonic bands. The width of the middle band depends strongly on the cavities 
resonant frequencies. By modulating the cavities frequency spacing, the system bandwidth is compressed. Figure 4 (b) 
shows the possibility of nearly flat band in the entire Brillouin zone of the structure. In this way, by cascading the 
bandwidth filters shown in Fig. 4 (a), it becomes possible to reduce the group velocity of the propagating pulse to zero. 
After the general behavior of the system is assessed, it is very important to compare these systems with the other 
systems previously discussed. Being an optimization process, the new system should combine the low group-velocity 
dispersion of the original square lattice at ε=12.25 and the higher compressible bandwidth of the triangular lattice 
structure of GaAs. The former has been taken into consideration in the system design. As shown in Fig. 5, the 
performance of the new design is comparable to that of the triangular lattice at ε=11.4 and rdefect=0.1a at ωo=0.375. 

6. CONCLUSION 
This work represents an attempt to overcome the high group-velocity dispersion brought about by the introduction of 
triangular lattice in a previous work [1] to the dynamic light stoppage structure. Shifting the center frequency of 
operation from 0.357 to 0.375 represents a more linear region of operation. In this way, the problem of group-velocity 
dispersion is overcome and the performance of the system becomes close to that of the original model of a square lattice. 
As the center frequency is modified, the necessary condition for maximum transmission is violated and the transmission 
dropped below maximum. This problem is handled by redesigning the cavities separations so that the round trip phase 
angle accumulated in the resonator is an integral multiple of 2π. In this way, the transmission returned back to maximum 
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and the compressible bandwidth of the final structure is comparable to that of the triangular lattice at the original center 
frequency of 0.357. 
 

                     
 

Fig. 4. (a) Transmission characteristics for a triangular 
lattice structures with ε=11.4 and ωo=0.375 

Fig. 4. (b) Band structure for a triangular lattice 
structures with ε=11.4 and ωo=0.375 

 

                     
 
 

Fig. 5. (a) Transmission characteristics for a square lattice 
(ε=12.25, rdefect=0.1a), a triangular lattice (ε=11.4, 

rdefect=0.1a), and a triangular lattice (ε=11.4, 
rdefect=0.2a). 

Fig. 5. (b) Band structure for a square lattice (ε=12.25, 
rdefect=0.1a), a triangular lattice (ε=11.4, 

rdefect=0.1a), and a triangular lattice (ε=11.4, 
rdefect=0.2a). 
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