
Computer Engineering Department

CC 311- Computer Architecture

Chapter 4

 The Processor:
 Datapath and Control

”Single Cycle”

Introduction

• The 5 classic components of a computer

• Chapter 4 discusses the processor
– Part-a: Datapath

– Part-b: Control 2

Control

Datapath

Memory

Processor

Input

Output

3

• Input:
– Values written in a previous clock cycle

• Output:

– Values to be used in the following clock cycle

• Prevents reading the signal in the same time it is
written

• More than one action can take place in the same
clock cycle

Review: Edge-triggered Methodology

Clock period Rising edge

Falling edge

4

Review: Timing Methodology

• Clock cycle(Tick/Period):

– Time for one clock period, usually of the processor,

which runs at a constant rate

• Memory Access time:

– Time between the initiation of a read request and

when the desired word arrives

• Memory Cycle time:

– Minimum time between requests to memory

– Should be greater than access time to keep address

line stable between accesses

5

Review: Timing Methodology
• Typical execution cycle:

– Read contents of some state elements,

– Send values through some combinational logic

– Write results to one or more state elements

– Clock period should cover all these activities

• All signals must propagate from state element1 to state element2 in

the time of one clock cycle

• If the state element is not updated on every clock, an explicit write

control signal is required, in which case the state element is changed

only when the control signal is asserted and the clock edge occurs

6

Review: Timing Methodology

• Edge triggered methodology allows a state

element to be read and written in the same clock

cycle

• The clock must be long enough to allow the

stability of input value before the active edge

occurs

Building the Datapath

7

• MUX Operation:

– Selects one of the (A or B) inputs to be the output, based on

a control (select) input (S)

– We need a 2x1 MUX

– The MUX has 3 inputs

• Equivalent C-Operation

 If (s == 0)

 C:= A;

 else C = B;

Review: 2 x 1 MUX

(s) Selector

C
A

B
0

1

8

Universal ALU

• Symbolic representation:

– (Sometimes used to represent adders as well)

32

32

32

Operation

Result

a

b

ALU

Zero Flag

Cout from MSB

Cin to LSB

Overflow Flag

9

10

Building the Datapath

• The major components required to execute

each class of MIPS instructions?

– A memory unit to store the instructions

– PC to store the address of the current instruction

– Adder to increment PC to address of next

instruction

11

Building the Datapath

• How are these components connected?

Building the Datapath

• The major components required to execute

 R-Format instructions

– add, sub, and, or, slt

– Three register operands
• Two read ports to read two registers from register file

• One write port to write into one register

– Data lines 32-bit

– Register lines

– ALUOp

12

13

• A set of 32 registers

– 5-inputs

• 2 read-ports to supply source

register numbers

• 1 write-port to supply destination

register number

• 1 Data bus

• 1 Register write enable control

signal

– 2-outputs

• Data from register 1

• Data from register 2

– 1-Control signal

• RegWrite

• No need to read-enable

Review: Register File

Register

File

Register

Selectors

Data

Buses

Data

Bus

5

5

5

32

32

32

RegWrite

Read
Reg1

Write
Reg1

Read
Reg 2

Write
Data

Write Enable

Read
Data1

Read
Data2

13

14

• Need to submit:

– Register #

• For N-registers we

need:

– n x 1 MUX

Review: Reading from Register File

Read register

number 1

Register 0

Register 1

. . .

Register n – 2

Register n – 1

M

u

x

Read register

number 2

M

u

x

Read data 1

Read data 2

14

15

Review: Writing to Register File

• Need to submit:

– Register #

– Data

– Write control signal

• To choose a register, use

– Decoder

• To determine when to

write, use the clock

• Note:

– C means control signal

– D means data lines

Write

0

1

n-to-2n

decoder

n – 1

n

Register 0

C

D

Register 1

C

D

Register n – 2

C

D

Register n – 1

C

D

.

.

.

Register number
.
.
.

Register data

Building the Datapath (lw, sw)

I n s t r u c t i o n

1 6 3 2

R e g i s t e r s
W r i t e
r e g i s t e r

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

D a t a
m e m o r y

W r i t e
d a t a

R e a d
d a t a

M
u
x

M
u
x W r i t e

d a t a

S i g n
e x t e n d

A L U
r e s u l t

Z e r o

A L U

A d d r e s s

R e g W r i t e

A L U o p e r a t i o n 3

M e m R e a d

M e m W r i t e

A L U S r c
M e m t o R e g

16

17

Building the Datapath (beq)

• For branch instructions,

 two operations are needed

– Compare register contents

– ALU Zero signal returns the result

 of comparison

– Compute branch target address

• A sign-extend unit is required

• If branch is taken

– Branch target address becomes the

new PC contents

• If branch is not taken

– PC+4 is the new value for PC

Review: MIPS Instruction Format

op target address

0 26 31

6 bits 26 bits

op rs rt rd shamt funct

0 6 11 16 21 26 31

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

rs op rt immediate

0 16 21 26 31

6 bits 16 bits 5 bits 5 bits

R-type

I-type

J-type

18

Addressing Modes

• Register addressing

• Base or displacement addressing

• Immediate addressing

• PC-relative addressing

• Pseudo-direct addressing

19

Addressing Modes (1)

• Register addressing

– Operand is a register

– Value is the contents of the register

20

Building the Datapath

op rs rt rd shamt funct

0 6 11 16 21 26 31

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

R-type

21

Addressing Modes

• Register addressing

• Base or displacement addressing

• Immediate addressing

• PC-relative addressing

• Pseudo-direct addressing

22

Addressing Modes (2)

• Base or displacement addressing

– Operand location =

 register + constant (offset) in the instruction

23

Building the Datapath (sw)

24

Building the Datapath (lw)

25

Building Datapath (R-type, lw, sw)

I n s t r u c t i o n

1 6 3 2

R e g i s t e r s
W r i t e
r e g i s t e r

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

D a t a

m e m o r y
W r i t e
d a t a

R e a d
d a t a

M
u
x

M
u
x W r i t e

d a t a

S i g n

e x t e n d

A L U
r e s u l t

Z e r o

A L U

A d d r e s s

R e g W r i t e

A L U o p e r a t i o n 3

M e m R e a d

M e m W r i t e

A L U S r c
M e m t o R e g

26

Building Datapath (R-type, lw, sw)

27

Datapath Operation for R-Format (add)

• Step1: Add $t1, $t2, $t3

– Fetch instruction from instruction memory

– Increment program counter

• Step2:

– Decode result is Add operation

– Read two registers $t2 & $t3 from register file

• Step 3:

– ALU operates on data, using “funct” field code to generate the ALU

function

• Step4:

– Write result of step 3 from ALU into register $t1

op rs rt rd shamt funct

0 6 11 16 21 26 31

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

28

Datapath Operation for R-Format (add)

Add $t1, $t2, $t3 (Fig. 5.19, p. 322)

29

Datapath Operation for R-Format (add)
• Step 1: Fetch instruction & increment PC

P C

I n s t r u c t i o n
m e m o r y

R e a d
a d d r e s s

I n s t r u c t i o n
[3 1 – 0]

I n s t r u c t i o n [2 0 – 1 6]

I n s t r u c t i o n [2 5 – 2 1]

A d d

I n s t r u c t i o n [5 – 0]

M e m t o R e g

A L U O p

M e m W r i t e

R e g W r i t e

M e m R e a d

B r a n c h
R e g D s t

A L U S r c

I n s t r u c t i o n [3 1 – 2 6]

4

1 6 3 2 I n s t r u c t i o n [1 5 – 0]

0

0 M
u
x

0

1

C o n t r o l

A d d A L U
r e s u l t

M
u
x

0

1

R e g i s t e r s
W r i t e
r e g i s t e r

W r i t e
d a t a

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

S i g n
e x t e n d

S h i f t
l e f t 2

M
u
x
1

A L U
r e s u l t

Z e r o

D a t a
m e m o r y

W r i t e
d a t a

R e a d
d a t a

M
u
x

1

I n s t r u c t i o n [1 5 – 1 1]

A L U
c o n t r o l

A L U
A d d r e s s

30

Datapath Operation for R-Format (add)
• Step2: Read registers from register file

i

i

P C

I n s t r u c t i o n
m e m o r y

R e a d
a d d r e s s

I n s t r u c t i o n
[3 1 – 0]

I n s t r u c t i o n [2 0 – 1 6]

I n s t r u c t i o n [2 5 – 2 1]

A d d

I n s t r u c t i o n [5 – 0]

M e m t o R e g
A L U O p
M e m W r i t e

R e g W r i t e

M e m R e a d
B r a n c h
R e g D s t

A L U S r c

I n s t r u c t i o n [3 1 – 2 6]

4

1 6 3 2 I n s t r u c t i o n [1 5 – 0]

0

0 M
u
x

0

1

C o n t r o l

A d d A L U
r e s u l t

M
u
x

0

1

R e g i s t e r s
W r i t e
r e g i s t e r

W r i t e
d a t a

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

S i g n
e x t e n d

S h i f t
l e f t 2

M
u
x
1

A L U
r e s u l t

Z e r o

D a t a
m e m o r y

W r i t e
d a t a

R e a d
d a t a

M
u
x

1

I n s t r u c t i o n [1 5 – 1 1]

A L U
c o n t r o l

A L U
A d d r e s s

31

Datapath Operation for R-Format (add)

• Step 3: Perform ALU operation

P C

I n s t r u c t o n
m e m o r y

R e a d
a d d r e s s

I n s r u c t o n
[3 1 – 0]

I n s t r u c t i o n [2 0 1 6]

I n s t r u c t i o n [2 5 2 1]

A d d

I n s t r u c t i o n [5 0]

M e m t o R e g

A L U O p

M e m W r i t e

R e g W r i t e

M e m R e a d

B r a n c h
R e g D s t

A L U S r c

I n s t r u c t i o n [3 1 2 6]

4

1 6 3 2 I n s t r u c t i o n [1 5 0]

0

0 M
u
x

0

1

A L U
c o n t r o l

C o n t r o l

A d d A L U
r e s u t

M
u
x

0

1

R e g i s t e r s
W r i e
r e g i s t e r

W r i e
d a t a

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

S i g n
e x t e n d

M
u
x
1

A L U
r e s u l t

Z e r o

D a t a
m e m o r y

R e a d
d a t a A d d r e s s

W r i t e
d a t a

M
u
x

1

I n s t r u c t i o n [1 5 1 1]

A L U

S h i f t
l e f t 2

32

Datapath Operation for R-Format (add)

• Step 4: Write result from ALU into register

P C

I n s t r u c t i o n
m e m o r y

R e a d
a d d r e s s

I n s t r u c t i o n
[3 1 – 0]

I n s t r u c t i o n [2 0 1 6]

I n s t r u c t i o n [2 5 2 1]

A d d

I n s t r u c t i o n [5 0]

M e m t o R e g
A L U O p
M e m W r i t e

R e g W r i t e

M e m R e a d

B r a n c h
R e g D s t

A L U S r c

I n s t r u c t i o n [3 1 2 6]

4

1 6 3 2 I n s t r u c t i o n [1 5 0]

0

0 M
u
x

0

1

A L U
c o n t r o l

C o n t r o l

S h i f t
l e f t 2

A d d A L U
r e s u l t

M
u
x

0

1

R e g i s t e r s
W r i t e
r e g i s t e r

W r i t e
d a t a

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

S i g n
e x t e n d

M
u
x
1

A L U
r e s u l t

Z e r o

D a t a
m e m o r y

W r i t e
d a t a

R e a d
d a t a

M
u
x

1

I n s t r u c t i o n [1 5 1 1]

A L U
A d d r e s s

33

Datapath Operation for I-Format (lw)

• Step 1: lw $t1, offset($t2)

– Fetch instruction from instruction memory

– Increment program counter

• Step 2:

– Decode result is lw operation

– Read register $t2 from register file

• Step 3:

– ALU operates on data to build an address

– Compute sum of $t2 & sign-extended 16-bits (offset) of instruction

• Step 4: Retrieve data located in the calculate address from memory

• Step5: Write memory contents into destination register $t1

11

op rs rt/rd?

offset

0 16 21 26 31

6 bits 16 bits 5 bits 5 bits

34

Datapath Operation for I-Format (lw)

lw $t1, offset($t2) - Exercise: Highlight the steps!

35

Datapath Operation for I-Format (sw)

sw $t1, 33($t2)

• Step 1:

– Fetch instruction from instruction memory

– Increment program counter

• Step 2:

– Decode result is sw operation

– Read register contents of $t1 and $t2 from register file

• Step 3:

– ALU operates on data to build an address

– Compute sum of $t2 & sign-extended 16-bits (offset) of instruction

• Step 4:

– Write data into the computed memory address
36

Datapath Operation for I-Format (sw)

sw $t1, offset($t2)

37

Addressing Modes

• Register addressing

• Base or displacement addressing

• Immediate addressing

• PC-relative addressing

• Pseudo-direct addressing

38

Addressing Modes (3)

• Immediate addressing

– Operand is a constant within the instruction itself

39

Addressing Modes (4)

• PC-relative addressing

– Address = PC (program counter)

 + constant in the instruction

40

bne $t4,$t5,Label # Next instruction is at Label if $t4 $t5

beq $t4,$t5,Label # Next instruction is at Label if $t4 = $t5

• Formats:

– Use Instruction Address Register (PC = program counter)

op rs rt 16 bit address I

Branch instruction

41

Datapath Operation for I-Format (beq)

beq $t1, $t2, offset (Fig. 5.21, p. 311)

• Step 1:

– Fetch instruction from instruction memory

– Increment PC

• Step 2:

– Decode instruction result in beq

– Read contents of $t1, $t2 registers from register file

• Step 3:

– ALU subtract the two values from registers

– Add PC+4 to sign-extended lower 16-bits of offset

• Step 4:

– The zero result from ALU is used to decide which adder result to store

into PC

42

Branch instruction

43

Branch instruction

44

Datapath Operation for (beq)

beq $t1, $t2, offset

45

Datapath Operation for (beq)

beq $t1, $t2, offset

46

Datapath Operation for (beq)

beq $t1, $t2, offset

47

Datapath Operation for (beq)

beq $t1, $t2, offset

48

Addressing Modes

• Register addressing

• Base or displacement addressing

• Immediate addressing

• PC-relative addressing

• Pseudo-direct addressing

49

Addressing Modes (5)

• Pseudo-direct addressing

– Jump address = 26 bits of the instruction

 + upper bits of the PC

50

Jump Instruction (J-Format)

• Jump instruction uses high order bits of PC

– address boundaries of 256 MB

 2 target

 6 bits 26 bits

 4 bits 26 bits 2

PC

51

Jump Instruction (J-Format)

52

Datapath Operation for J-Format (j)

j label

• Step 1:
– Fetch instruction from instruction memory

– Increment PC by 4

• Step 2:
– Decode instruction result is j

– Retrieve value of jump target (label)

• Step 3:
– Shift the label 26 bits left by 2 bits (to get byte count instead of word

count)

– Concatenate the upper 4 bits of PC +4 as the high-order bits (to get the
complete memory address)

• Step 4:
– Store the calculated address into PC

53

Datapath Operation for J-Format

54

Datapath Operation for J-Format

55

Processor Design
• Control Signals

– Register selection: Rs, Rt, Rd and Imed16 hardwired into datapath

– Operation selection:

– ALU data source (register or immediate address) (ALUsrc)

– ALU Operation selection (ALUctr)

– Memory Write (MemWr)

– MemtoReg (1 => Mem)

– RegDst (0 => “rt”; 1 => “rd”)

– RegWr (write dest. register) 56

Processor Design Step 4

Instruction<31:0>

Inst
Memory
Address

Control

<
2

1
:2

5
>

<
1

6
:2

0
>

<
1
1

:1
5

>

<
0

:1
5

>

<
2

1
:2

5
>

Imm16 Rd Rs Rt Op Fun

ALUctr RegDst ALUSrc ExtOp MemtoReg MemWr Equal nPC_sel RegWr

DATA PATH

 Control Unit
 Analyze implementation of each instruction to determine setting of control points

57

Processor Design
Control Signals needed by each instruction:

inst Register Transfer

ADD R[rd] <– R[rs] + R[rt]; PC <– PC + 4

 ALUsrc=R[rs], ALUctr=“add”, RegDst=rd, RegWr, nPC_sel=“+4”

SUB R[rd] <– R[rs] – R[rt]; PC <– PC + 4

 ALUsrc=R[rs], ALUctr=“sub”, RegDst=rd, RegWr, nPC_sel=“+4”

LOAD R[rt] <– MEM[R[rs] + sign_ext(Imm16)]; PC <– PC + 4

 ALUsrc = Im, ALUctr = “add”,

 MemtoReg, RegDst = rt, RegWr, nPC_sel = “+4”

STORE MEM[R[rs] + sign_ext(Imm16)] <– R[rs]; PC <– PC + 4

 ALUsrc=Im, ALUctr=“add”, MemWr, nPC_sel=“+4”

BEQ if(R[rs]== R[rt]) then PC<– PC+sign_ext(Imm16)] || 00 else PC <– PC + 4

 nPC_sel = EQUAL, ALUctr = “sub”
58

Main Control Unit

• Effect of the control signals when they are

asserted or de-asserted respectively

• See fig. 4.16, p. 321

Signal name If de-asserted (0) If asserted (1)

RegDst Destination register <= rt field (20-16) Destination register <= rd field (15-11)

RegWrite None Write data input => Write register

ALUSrc

Reg Data2

=> 2nd ALU operand

Sign-extnd 16-bits of instruction => 2nd ALU

operand

PCSrc PC <= PC + 4 (from adder) PC <= Branch target (from adder)

MemRead None Mem[Address] => to Read data output

MemWrite None Mem[Address] <= value on Write data input

MemtoReg Value to Write data input comes from ALUValue to Write data input comes from data memory

59

Main Control Unit

• The control signals based on different Opcode

60

Main Control Unit

• Control lines needed by each instruction (See Fig 5.18, p. 308)

– R-Format (add, sub, AND, OR, & slt)

• Source register : rs & rt

• Destination register: rd

• Writes a register (RegWrite = 1) but neither reads nor writes data memory

• ALUOp for R-Type format = 10 indicating that ALU control should be generated from

function field

– When Branch:

• Control signal = 0, PC<= PC +4;

• Otherwise it is replaced by Branch target

– For lw MemRead = 1,

– For sw MemWrite = 1

 Instruction RegDest ALUSrc MemtoReg RegWrite MemRead MemWrite Banch ALUOp1 ALUOp0

R-Format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1

CLK

Setup
Setup

62

63

64

Single Cycle Implementation
• Exercise: Assuming we have the following instruction mix:

 Load 25%

 Store 10%

 ALU instructions 45%

 Branch 15%

 Jump 5%

Calculate cycle time and total program (with L instructions) execution time

Assuming negligible delays except for the following:

– memory (200 ps) (ps = Pico Second)

– ALU and adders (100 ps)

– Register file access (50 ps)

– Note: For single-cycle instruction, CPI = 1

• Answer:

 (Complete answer)
65

Single Cycle Problems

• Single cycle instruction is not used in modern computers

• Disadvantages:

– Inefficient in both performance and HW cost

– Clock cycle must have the same length for every instruction

– Clock cycle determined by the longest possible path

– For complicated instruction like floating point, it will be harder

– Functional units must be duplicated, since each can be used
only once per cycle 66

