
Applications:

 Sorting & Searching

Week 5

Sorting

 Sorting takes an unordered collection and

makes it an ordered one.

5 12 35 42 77 101

1 2 3 4 5 6

5 12 35 42 77 101

1 2 3 4 5 6

Sorting

There are many algorithms for sorting a list of items

 Bubble sort

 Selection Sort

 Insertion Sort

 Quick Sort

 Merge Sort

 Heap Sort

 Shell Sort

 Radix Sort

 Bucket Sort

 ….. Sort

Bubble Sort

Bubble Sort

 During first pass, compare first two items in the array, exchange

them if they are out of order.

 Compare the second item with third one, and swap them if they

are out of order.

 You proceed, comparing and exchanging items until you reach

the end of the array.

 During the second pass, you perform the same actions of

comparing and exchanging every two adjacent items, until you

finish comparing the third last item with the second last.

 Repeat the same process for n-1 passes

Bubble Sort

for pass = 1 .. n-1

 for position = 1 .. n-pass

 if element at position < element at position +1

 Swap elements

 end if

 next position

next pass

"Bubbling" the Largest Element

 Traverse a collection of elements

 Move from the front to the end

 “Bubble” the largest value to the end

using pair-wise comparisons and

swapping

5 12 35 42 77 101

1 2 3 4 5 6

"Bubbling" the Largest Element

 Traverse a collection of elements

 Move from the front to the end

 “Bubble” the largest value to the end

using pair-wise comparisons and

swapping

5 12 35 42 77 101

1 2 3 4 5 6

Swap 42 77

"Bubbling" the Largest Element

 Traverse a collection of elements

 Move from the front to the end

 “Bubble” the largest value to the end

using pair-wise comparisons and

swapping

5 12 35 77 42 101

1 2 3 4 5 6

Swap 35 77

"Bubbling" the Largest Element

 Traverse a collection of elements

 Move from the front to the end

 “Bubble” the largest value to the end

using pair-wise comparisons and

swapping

5 12 77 35 42 101

1 2 3 4 5 6

Swap 12 77

"Bubbling" the Largest Element

 Traverse a collection of elements

 Move from the front to the end

 “Bubble” the largest value to the end

using pair-wise comparisons and

swapping

5 77 12 35 42 101

1 2 3 4 5 6

No need to swap

"Bubbling" the Largest Element

 Traverse a collection of elements

 Move from the front to the end

 “Bubble” the largest value to the end

using pair-wise comparisons and

swapping

5 77 12 35 42 101

1 2 3 4 5 6

Swap 5 101

"Bubbling" the Largest Element

 Traverse a collection of elements

 Move from the front to the end

 “Bubble” the largest value to the end

using pair-wise comparisons and

swapping

77 12 35 42 5

1 2 3 4 5 6

101

Largest value correctly placed

Bubble Sort Example: 1 5 9 6 2 3

FIRST PASS
1 5 9 6 2 3

1 5 9 6 2 3

1 5 9 6 2 3

1 5 6 9 2 3

1 5 6 2 9 3

1 5 6 2 3 9

SECOND PASS
1 5 6 2 3 9

1 5 6 2 3 9

1 5 6 2 3 9

1 5 2 6 3 9

1 5 2 3 6 9

THIRD PASS
1 5 2 3 6 9

1 5 2 3 6 9

1 2 5 3 6 9

1 2 3 5 6 9

FOURTH PASS
1 2 3 5 6 9

1 2 3 5 6 9

1 2 3 5 6 9

FIFTH PASS
1 2 3 5 6 9

1 2 3 5 6 9

Bubble Sort

 for (int pass = 1; pass < 100; pass++) {

 for (int j = 0; j < 100 - pass; j++) {

 /* bubble the larger number to the right */

 if (A[j] > A[j+1]) {

 int temp = A[j];

 A[j] = A[j+1];

 A[j+1] = temp;

 } /* end if */

 } /* end for */

 } /* end for */

Bubble Sort with Flag

 Observe if no swapping is performed during a pass,
then it implies list of items is sorted.

 we can improve efficiency of bubble sort algorithm by
introducing flag that is initialized to 0 at beginning of
every pass and is set to 1 when a swap occurs.

 At the end of each pass, check if flag is still 0. If so, no
swap has occurred at this pass, implying that the list is
sorted. Thus, the bubble sort algorithm can terminate
right away

Modified Bubble Sort

for pass = 1 .. n-1

 exchange = false

 for position = 1 .. n-pass

 if element at position < element at
position +1

 exchange elements

 exchange = true

 end if

 next position

 if exchange = false BREAK

next pass

Bubble Sort with Flag

 int swap = 1 ; /* Nothing swapped yet */

 for (int pass = 1; pass < 100 && swap == 1; pass++)

{

 swap = 0; /* assume sorted */

 for (int j = 0; j < 100 - pass; j++) {

 /* bubble the larger number to the right */

 if (A[j] > A[j+1]) {

 int temp = A[j];

 A[j] = A[j+1];

 A[j+1] = temp;

 swap = 1; /* swap implies not yet sorted */

 } /* end if */

 } /* end for */

 } /* end for */

Selection Sort

 Find the smallest value in the list

 Switch it with the value in the first position

 Find the next smallest value in the list

 Switch it with the value in the second position

 Repeat until all values are in their proper places

Selection Sort

Selection Sort

 An example: 3 9 6 1 2

 smallest is 1:

 1 9 6 3 2

 smallest is 2:

 1 2 6 3 9

 smallest is 3:

 1 2 3 6 9

 smallest is 6:

 1 2 3 6 9

Selection Sort

 Solution Steps:

 For (i = 0 ; i < Last ; i ++)

 find smallest element M in subarray (i .. Last-1)

 Swap (M , first of this subarray)

Searching

Problem

Searching

 Searching is the process of determining if a target

item is present in a list of items, and locating it

 A typical searching algorithm over an array returns

the array index where the target item is found, or –1 if

it is not found

 We will examine two specific algorithms:

 Linear search

 Binary search

Linear Search

 Linear search is also called sequential

search

 The approach of linear search:

 look at each item in turn, beginning with the

first one, until either you find the target item or

you reach the end of the array

loop

 if((i > MAX) OR (my_array[i] = target))

 exit

 else

 i <- i + 1

Endloop

my_array
 7 12 5 22 13 32

1 2 3 4 5 6 target = 13

Linear Search

loop

 if((i > MAX) OR (my_array[i] = target))

 exit

 else

 i <- i + 1

Endloop

my_array
 7 12 5 22 13 32

1 2 3 4 5 6 target = 13

Linear Search

loop

 if((i > MAX) OR (my_array[i] = target))

 exit

 else

 i <- i + 1

Endloop

my_array
 7 12 5 22 13 32

1 2 3 4 5 6 target = 13

Linear Search

loop

 if((i > MAX) OR (my_array[i] = target))

 exit

 else

 i <- i + 1

Endloop

my_array
 7 12 5 22 13 32

1 2 3 4 5 6 target = 13

Linear Search

loop

 if((i > MAX) OR (my_array[i] = target))

 exit

 else

 i <- i + 1

Endloop

my_array
 7 12 5 22 13 32

1 2 3 4 5 6 target = 13

Linear Search

loop

 if((i > MAX) OR (my_array[i] = target))

 exit

 else

 i <- i + 1

Endloop

my_array
 7 12 5 22 13 32

1 2 3 4 5 6 target = 13

Linear Search

Linear Search

int Found = 0;

for (i=0 ; i < 100 ; i++)

 {

 if (A[i] == target)

 {

 printf(“ Found it ! At %d\n“ , i);

 found = 1;

 break ;

 }

 }

if (found ==0)

 printf(“ Looked all over, Not here \n“);

Linear Search

 Example:

3 9 6 1 2 23 8

 How many array elements are compared with the
target value if the target is 3?

 How many array elements are compared with the
target value if the target is 2?

 How many array elements are compared with the
target value if the target is 8?

 How many array elements are compared with the
target value if the target is 5?

Binary Search

 If an array is sorted

 Check whether the middle element is equal to target. If so, it done.

 Otherwise, determine which half of array the target should be in

 Perform binary search again on sub-array by comparing its middle

element with target

 Repeatedly divide array in half, until desired item is found, or you

have a sub-array contains only one element not equal to target, in

which case target is not found.

Binary Search

 Example: target value is 25

Array = 1, 3, 4, 7, 9, 12, 17, 20, 21, 25, 34, 39, 41

Middle element = 17 , 25 should be in second half

Sub-array = 20, 21, 25, 34, 39, 41

Middle element = 34 , 25 should be in first half

Sub-array = 20, 21, 25

Middle element = 21 , 25 should be in second half

Sub-array = 25

Middle element = 25, done!

Binary Search

Example: target value is 6

Array = 1, 3, 4, 7, 9, 12, 17, 20, 21, 25, 34, 39, 41

Middle element = 17 , 6 should be in first half

Sub-array = 1, 3, 4, 7, 9, 12

Middle element = 7 , 6 should be in first half

Sub-array = 1, 3, 4

Middle element = 3 , 6 should be in second half

Sub-array = 4

Middle element = 4 != 6, failed!

Binary Search

 int low = 0;

 int high = 99;

 int found = 0;

 int mid ;

 while ((low <= high) && (found==0)) {

 mid = (low + high) / 2;

 if (target == A[mid])

 { printf(“ Found it “);

 found = 1 ;

 }

 else if (target < A[mid])

 high = mid - 1; /* consider 1st half of array */

 else

 low = mid + 1; /* consider 2nd half of array */

 }

 if (found == 0)

 printf(“ Definitely NOT here “);

  Example: tracing binary search

2 3 7 7 9 15 16 18 20 21

3

2

1

Iteration

target = 7, # comparisons = 3

2

0

0

low

2

1

4

mid

3

3

9

high

9 4 0 1

high mid low Iteration

target = 9, # comparisons = 1

 Example: tracing binary search

2 3 7 7 9 15 16 18 20 21

9 9 9 4

9 8 8 3

9 7 5 2

9 4 0 1

high mid low Iteration

target = 21, # comparisons = 4

9 10

9 9 9 4

9 8 8 3

9 7 5 2

9 4 0 1

high mid low Iteration

target = 22, # comparisons = 4

Questions?

Searching and Sorting

in

Two Dimensional Arrays?

