Arab Academy for Science and Technology and Maritime Transport Computer Science Curriculum Course Syllabus					
Course Code: BA304	Course Title: Linear Algebra	$\begin{aligned} & \text { Classi } \\ & \mathrm{R} \end{aligned}$	ation:	Coordinator's Name: Dr. Adel Elrfaay	Credit: 3
Pre-requisites: BA102	Co-requisites: None	Schedule: Lecture 2 hrs. Tutorial/Lab 2 hrs.			
Course Description: This course illustrates the nature of mathematics as a blend of technique, theory, and applications. The important problem of solving systems of linear equations leads to the algebra of matrices, determinants, vector spaces, bases and dimension, linear transformations, and Eigen values. Vector spaces are studied in an abstract setting, examining the concepts of linear independence, span, bases, subspaces, and dimension. There follows a discussion of the association between linear transformations and matrices					
Textbook: Lay, David C, Linear Algebra and Its Applications with CD/ROM, Addison Wesley.					
References: David Poole, Linear Algebra: A Modern Introduction, Brooks Cole.					
Course Objective/Course Learning Outcome:			Contribution to Program Student Outcomes:		
1. Learn the basic theory of linear algebra through Eigenvalues. 2. Realize the wide applicability of linear algebra by examining applications.			(SO1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions. (SO3) Communicate effectively in a variety of professional contexts.		
3. Learn some useful algorithms for linear systems.			(SO2 comp comp progr (SO6) softw	Design, implement ing-based solution ing requirements i n's discipline. Apply computer sc e development fun	d evaluate a meet a given set of context of the e theory and entals to produce

	computing-based solutions.
Course Outline: 1. Matrix Algebra - Matrix Addition and Scalar Multiplication - Matrix Multiplication - Applications of Matrix Arithmetic - Special Matrices and Transposes - Determinants - Matrix Inverses 2. LINEAR SYSTEMS OF EQUATIONS AND MATRICES - Linear equations: the beginning of algebra - Reduced Row Echelon Form and Row Operations - Rank and systems of linear equations - Solving Linear Systems via Gaussian Reduction -Row Operations and Equivalent Systems - The Homogeneous Case, The NonHomogeneous Case - Criteria for Consistency and Uniqueness 3. VECTOR SPACES - Definitions and Basic Concepts - Subspaces - Linear Combinations - Subspaces Associated with Matrices and Operators - Bases and Dimension - Inner product, length and orthogonality - The Gram-Schmidt Process	4. LINEAR TRANSFORMATIONS - Mappings - General Properties of Linear Transformations - Range and null space - Examples 5. EIGENVALUES AND EIGENVECTORS - Eigenvalues and Eigenvectors - The Characteristic Equation - Diagonalization

