

Arab Academy for Science, Technology & Maritime Transport College of Engineering & Technology Mechanical Engineering Department

University/Academy:	Arab Academy for Science, Technology & Maritime Transport
Faculty/Institute:	College of Engineering & Technology
Program:	B.Sc. Mechanical Engineering

Form no. (12): Course Specification

1- Course Data

I- Course Data			
Course Code:	Course Title:		Academic Year/Level:
ME 592	Mechatronics Systems		5th year / 9th
			semester
Specialization:	No. of Instructional Units	Lecture	Practical
Mechanical	3 credits	2 hrs.	2 hrs.

2- Course Aim

- Understand and analyze the Mechatronics systems
- Introducing the key elements, techniques, control, and design process user for Mechatronics system design
- Study the important components Data Acquisition Systems (DAS).

3- Intended Learning Outcomes

a- Knowledge and Understanding	Through knowledge and understanding, students will be able to:	
	a.m.3) The principles of sustainable design and development	
b-Intellectual	Through intellectual skills, students will be able to:	
Skills	b.m.1) Identify at an appropriate level the design, production, interfacing and software needs of different parts of Mechatronics systems	
C- Professional Skills	Through professional and practical skills, students will be able to:	
	c.2) Professionally merge the engineering knowledge, understanding, and feedback to improve design,	
	Products and/or services	
	c.3) Create and/or re-design a process, component or system, and carry out specialized engineering designs	
	c.5) Use computational facilities and techniques, measuring instruments, workshops and laboratory equipment to design experiments, collect, analyze and interpret results	

	c.m.1) Compete, in-depth, in at least one engineering discipline, namely mechanics, electronics or Interfacing and software c.m.4) Apply the principles of sustainable design and development
d- General Skills	Through general and transferable skills, students will be able to:

4- Course Content

	Content
Week No.1	Introduction to Mechatronics Systems
Week No.2	Mechatronics of System Performance
Week No.3	Computer Control
Week No.4	Z-transform
Week No.5	Discrete Controllers I
Week No.6	Discrete Controllers II
Week No.7	7th week exam / 7th week evaluation
Week No.8	Interfacing Sensors and Actuators to Computer
Week No.9	Real-Time Interfacing
Week No.10	Computer I/O Cards and Software I
Week No.11	Computer I/O Cards and Software II
Week No.12	12th week exam / 12 th week evaluation
Week No.13	Data Acquisition and Control Case Studies.
Week No.14	Liquid Level Control
Week No.15	Robotics Applications
Week No.16	Finall Examination

5- Teaching and Learning Methods

- Lectures
- Tutorials
- Reports & sheets
- Laboratories
- Seminars

6-Teaching and Learning Methods for Students with Special Needs

- Lectures
- Tutorials
- Reports & sheets
- Laboratories
- Seminars

Engineering Requirements and Design Considerations in college Buildings and its Leading Passages

- The design of college buildings and pedestrian passages leading to it are sloppy to allow the transportation of the handicapped;
- Doors are wide enough to let wheel chairs pass through easily and conveniently.
- Lifts are provided for movement between floors.
- Doors are made from light weight materials to make it easy for the handicapped suffering from weakness in limb muscles or those handicapped using prosthetic limbs to deal with them with the least muscular effort.
- Class floors are made from non-slippery materials to prevent falls on the part of the handicapped.
- Sudden changes in the floor level are prevented.

Design Considerations of the Classes

- Class boards are placed at 60 cm high to allow wheeled chair users or those suffering from limited arm mobility use them.
- Enough spaces are left between seats and benches to prevent hindering the movement of wheeled chairs between them.
- Handicapped students sit among normal people in class to be able to interact with them. Nevertheless, in urgent cases according to the nature of the disability, the handicapped students sit in fixed suitable places whether at the front or the back of the class.
- Handicapped students sit close to the main exits of the class to be able to evacuate in case of emergencies.

Academic Support:

- The general academic advisor appoints an academic supervisor for handicapped students.
- Continuous follow ups are made for handicapped students after each assessment to evaluate their academic level of achievement

a-Procedures used	1-Written Examinations to assess The Intended Learning Outcomes.2-Class Activities (Reports, Discussions,) to assess The Intellectual Skills.
b- Schedule:	Assessment 17th Week AssessmentAssessment 212th Week AssessmentAssessment 3Continuous AssessmentsAssessment 416th Week Final Written Exam

7- Student Assessment

c- Weighing of	7 th Week Evaluation	30 %
Assessment	12 th Week Evaluation	20 %
	Final-term Examination	40 %
	Oral Examination	00 %
	Practical Examination	00 %
	Semester Work	10 %
	Total	100%

8- List of References:

a- Course Notes	N/A
b- Required Books (Textbooks)	 D. Shetty & R.A.Kolk "Mechatronics System design", PWS Publishing Company, Latest Edition.
c- Recommended Books	 J.E.Carryer, R.M.Ohline, and T.W.Kenny, "Introduction to Mechatronic design", Latest Edition, PEARSON Publishing Company. J.P. Holman, W.J Gaida, "Experimental Methods for Engineer", McGraw Hill, Latest Edition. M.B.Histand & D. G. Alciatore" Introduction to Mechatronics and Measurement Systems", McGraw-Hill, Latest Edition
d- Periodicals, Web Sites, etc.	N/A

Course Instructor: Prof. Sohair Rezeka Head of Department: Prof. El-Sayed Saber

Program Manager: Prof. EI-Sayed Saber

Dean of College of Engineering and <u>Technology of AASTMT</u> Name: Prof. Moustafa Hussein Aly Signature:

Executive Manager of Quality Assurance Center of AASTMT

Name: Prof. Aziz Ezzat Signature: