

| University/Academy: | Arab Academy for Science, Technology & Maritime Transport |
|---------------------|-----------------------------------------------------------|
| Faculty/Institute:  | College of Engineering & Technology                       |
| Program:            | B.Sc Computer Engineering                                 |

# Form no. (12): Course Specification

#### 1- Course Data

| I Course Buta           |                                      |         |                                                                         |
|-------------------------|--------------------------------------|---------|-------------------------------------------------------------------------|
| Course Code:<br>CC516   | Course Title:<br>Pattern Recognition |         | Academic Year/Level:<br>4 <sup>th</sup> year / 7 <sup>th</sup> semester |
| Specialization:         | No. of Instructional Units           | Lecture | Practical                                                               |
| Computer<br>Engineering | 3                                    | 2       | 2                                                                       |

## 2- Course Aim

In the field of pattern recognition the aim is to teach a computer to recognize patterns in data sets (e.g. inputoutput relations). Real data is often noisy, and therefore probabilistic methods are used. Using the Bayesian perspective is the starting point for a treatment of both classical methods (least mean squares methods, discriminant analysis) and modern methods (neural networks, Bayesian learning).

## **3- Intended Learning Outcomes**

| a- Knowledge and | Through knowledge and understanding, students will be able to:                                                          |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Understanding    | a1. Concepts and theories of mathematics and sciences, appropriate to the                                               |  |
|                  | computer engineering.                                                                                                   |  |
|                  | <ul> <li>List applications of pattern recognition.</li> </ul>                                                           |  |
|                  | <ul> <li>Know what Image Processing is.</li> </ul>                                                                      |  |
|                  | <ul> <li>Define Gray level scaling transformations.</li> </ul>                                                          |  |
|                  | List different transformations.                                                                                         |  |
|                  | Define smoothing transformations.                                                                                       |  |
|                  | <ul> <li>Show effect of smoothing transformations.</li> </ul>                                                           |  |
|                  | <ul> <li>Show the importance of edge detection in different applications.</li> </ul>                                    |  |
|                  | <ul> <li>Identify the challenges faced by different edge detecting algorithms.</li> </ul>                               |  |
|                  | Define image segmentation.                                                                                              |  |
|                  | Define shape detection.                                                                                                 |  |
|                  | <ul> <li>Define the different morphological operations such as dilation and erosion.</li> </ul>                         |  |
|                  | <ul> <li>Know what statistical decision making is.</li> </ul>                                                           |  |
|                  | Define Bayes' Theory.                                                                                                   |  |
|                  | <ul> <li>Define statistical priors and posteriors, probability of error, and error rate of a<br/>classifier.</li> </ul> |  |
|                  | <ul> <li>Define what clustering is and class discovery.</li> </ul>                                                      |  |
|                  | List different clustering techniques.                                                                                   |  |
|                  | <ul> <li>Show what partitional clustering is.</li> </ul>                                                                |  |
|                  | Define what neural networks are.                                                                                        |  |
|                  | <ul> <li>List the different applications for neural networks.</li> </ul>                                                |  |
|                  | <ul> <li>Know the learning algorithm used in training the ff-net.</li> </ul>                                            |  |
|                  | Define HopField Networks.                                                                                               |  |
| b- Intellectual  | Through intellectual skills, students will be able to:                                                                  |  |
| Skills           | b1. Select/Apply appropriate mathematical and computer-based methods for                                                |  |
|                  | modeling and analyzing problems and select appropriate solutions for                                                    |  |
|                  | engineering problems based on analytical thinking                                                                       |  |
|                  | Compare different transformations.                                                                                      |  |
|                  | <ul> <li>Show effect of smoothing transformations.</li> </ul>                                                           |  |
|                  | <ul> <li>Differentiate between Prewitt's and Sobel's edge detecting algorithms.</li> </ul>                              |  |

|                   | <ul> <li>Solve a classification problem using Bayes' Theory.</li> <li>b3. Combine, exchange, and assess different ideas, views, and knowledge</li> </ul> |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | From a range of sources.                                                                                                                                 |
|                   | <ul> <li>Snow the groups generated by hierarchical methodology using aggiomerative<br/>clustering algorithm.</li> </ul>                                  |
|                   | <ul> <li>Demonstrate the effect of the number classes on the classification process.</li> </ul>                                                          |
|                   | <ul> <li>Show the effect of noisy data on the output groups.</li> </ul>                                                                                  |
|                   | <ul> <li>Show how to build and use a feed forward neural network for a classification problem<br/>using Matlab</li> </ul>                                |
| c- Professional   | Through professional and practical skills, students will be able to:                                                                                     |
| Skills            | c1. Professionally merge the engineering knowledge, understanding, and                                                                                   |
|                   | feedback to improve design, products and/or services.                                                                                                    |
|                   | <ul> <li>Apply transformations to a set of images using Matlab.</li> </ul>                                                                               |
|                   | <ul> <li>Apply various smoothing transformations to a set of images using Matlab.</li> </ul>                                                             |
|                   | <ul> <li>Experiment with different edge detectors such as Prewitt's and Sobel's.</li> </ul>                                                              |
|                   | <ul> <li>Apply region labeling algorithm to different images using Matlab.</li> </ul>                                                                    |
|                   | • Apply boundary detection, gap filling, and Hough transforms to images using Matlab.                                                                    |
|                   | <ul> <li>Apply opening and closing operations to different images using Matlab.</li> </ul>                                                               |
|                   | • Distinguish between single linkage, complete linkage, and average linkage.                                                                             |
|                   | Apply agglomerative algorithm to different datasets using Matlab.                                                                                        |
|                   | <ul> <li>Apply k-means algorithm to different datasets using Matlab.</li> </ul>                                                                          |
|                   | c2. Create and/or re-design a process, component or system, and carry out                                                                                |
|                   | approach.                                                                                                                                                |
|                   | <ul> <li>Design a feed forward neural network for a classification problem.</li> </ul>                                                                   |
|                   | <ul> <li>Distinguish between Hopfield and feed forward neural networks.</li> </ul>                                                                       |
| d- General Skills | Through general and transferable skills, students will be able to:                                                                                       |
|                   | d2. Work in stressful environment and within constraints, communicate                                                                                    |
|                   | effectively, lead and motivate individuals and effectively manage tasks, time,                                                                           |
|                   | and resources.                                                                                                                                           |
|                   | d4. Search for information and engage in life-long self-learning computer                                                                                |
|                   | engineering and refer to relevant literatures.                                                                                                           |
|                   | • Plot quadratic and linear decision boundaries for different classes using Matlab.                                                                      |
|                   | Sketch the probability of different events for different classes.                                                                                        |
|                   | Sketch pdfs for different classes identifying decision boundaries.                                                                                       |
|                   | <ul> <li>Sketch different groups according to the nearest neighbor algorithm.</li> </ul>                                                                 |
|                   |                                                                                                                                                          |

# 4- Course Content

| Week No.1          | Introduction to Pattern Recognition      |
|--------------------|------------------------------------------|
| Week No.2          | Gray scale Transformations               |
| Week No.3          | Smoothing Transformations                |
| Week No.4          | Edge Detection                           |
| Week No.5          | Scene Segmentation and labeling          |
| Week No.6          | Shape Detection                          |
| Week No.7          | 7th week exam + Revision                 |
| Week No.8          | Morphological Operations                 |
| Week No.9          | Statistical Decision Making              |
| Week No.10         | Minimization of Classification Error     |
| Week No.11         | Hierarchical Clustering                  |
| Week No.12         | 12th week exam + Revision                |
| Week No.13         | Partitioned Clustering                   |
| Week No.14         | Feed Forward Neural Networks             |
| Week No.15         | Hopfield Networks                        |
| <b>Week No.</b> 16 | Presentation of projects and Final Exam. |

# 5- Teaching and Learning Methods

- Lectures
- Tutorials
- Reports & sheets
- Laboratories
- Seminars

### 6-Teaching and Learning Methods for Students with Special Needs

- Lectures
- Tutorials
- Reports & sheets
- Laboratories
- Seminars

The academic advisors of each student, as well as dedicated department TAs monitor the students' progress and solve any problem he/she may encounter.

### 7- Student Assessment

| a-Procedures used | 1-Written Examinations to         | o assess The Intended Learning Outcomes.           |
|-------------------|-----------------------------------|----------------------------------------------------|
|                   | 2-Class Activities (Reports       | , Discussions,) to assess The Intellectual Skills. |
| b- Schedule:      | Assessment 1                      | 7 <sup>th</sup> ,Week Written Exam                 |
|                   | Assessment 2                      | 12" Week Written Exam                              |
|                   | Assessment 3                      | Continuous                                         |
|                   | Assessment 4                      | 16 <sup>th</sup> Week Final Written Exam           |
| c- Weighing of    | 7 <sup>th</sup> Week Examination  | 30 %                                               |
| Assessment        | 12 <sup>th</sup> Week Examination | 20 %                                               |
|                   | Final-term Examination            | 40 %                                               |
|                   | Oral Examination                  | 00 %                                               |
|                   | Practical Examination             | 00 %                                               |
|                   | Semester Work                     | 10 %                                               |
|                   | Total                             | 100%                                               |

## 8- List of References:

| a- Course Notes                    |                                                                                                      |
|------------------------------------|------------------------------------------------------------------------------------------------------|
| <b>b- Required Books</b>           | <ul> <li>E. Gose, R. Johnsonbaugh, "Pattern Recognition and Image Analysis", Prentice Hall</li></ul> |
| (Textbooks)                        | PTR.                                                                                                 |
| c- Recommended                     | <ul> <li>R. Gonzalez and R. Woods, "Digital Image Processing", Pearson Hall, Second</li></ul>        |
| Books                              | Edition.                                                                                             |
| d- Periodicals,<br>Web Sites, etc. |                                                                                                      |

Course Instructor: Prof. Dr Khaled Mahar Head of Department: Prof. Dr. Mohamad AbouEI-Nasr

Program Manager: Prof. Dr. Mohamad AbouEl-Nasr