Robotics

Lecture 5

Forward Kinematics
 Examples

Emam Fathy

Department of Electrical and Control Engineering

email: emfmz@aast.edu

http://www.aast.edu/cv.php?disp unit=346\&ser=68525

- Base frame O_{0}

Examples

- All Z 's are normal to the page

Example 2

Example 2

$$
\begin{aligned}
A_{1} & =\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & a_{1} c_{1} \\
s_{1} & c_{1} & 0 & a_{1} s_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
A_{2} & =\left[\begin{array}{cccc}
c_{2} & s_{2} & 0 & a_{2} c_{2} \\
s_{2} & -c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
A_{3} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
A_{4} & =\left[\begin{array}{cccc}
c_{4} & -s_{4} & 0 & 0 \\
s_{4} & c_{4} & 0 & 0 \\
0 & 0 & 1 & d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
T_{4}^{0}=A_{1} \cdots A_{4}=\left[\begin{array}{cccc}
c_{12} c_{4}+s_{12} s_{4} & -c_{12} s_{4}+s_{12} c_{4} & 0 & a_{1} c_{1}+a_{2} c_{12} \\
s_{12} c_{4}-c_{12} s_{4} & -s_{12} s_{4}-c_{12} c_{4} & 0 & a_{1} s_{1}+a_{2} s_{12} \\
0 & 0 & -1 & -d_{3}-d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example 3
 The three links cylindrical

Example 3
 The three links cylindrical

Example 3

The three links cylindrical

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & 0 \\
s_{1} & c_{1} & 0 & 0 \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example 3
 The three links cylindrical

$$
T_{3}^{0}=A_{1} A_{2} A_{3}=\left[\begin{array}{cccc}
c_{1} & 0 & -s_{1} & -s_{1} d_{3} \\
s_{1} & 0 & c_{1} & c_{1} d_{3} \\
0 & -1 & 0 & d_{1}+d_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Examples

Note: the shoulder (pismatic joint) is mounted wrong.

Link	d_{i}	a_{i}	α_{i}	θ_{i}
1	0	0	-90	\star
2	d_{2}	0	+90	\star
3	\star	0	0	0
4	0	0	-90	\star
5	0	0	+90	\star
6	d_{6}	0	0	\star
joint variable				

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{rrrr}
c_{1} & 0 & -s_{1} & 0 \\
s_{1} & 0 & c_{1} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad A_{4}=\left[\begin{array}{rrrr}
c_{4} & 0 & -s_{4} & 0 \\
s_{4} & 0 & c_{4} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{2}=\left[\begin{array}{rrrr}
c_{2} & 0 & s_{2} & 0 \\
s_{2} & 0 & -c_{2} & 0 \\
0 & 1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{3}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& T_{6}^{0}=\left[\begin{array}{rrrr}
c_{5} & 0 & s_{5} & 0 \\
s_{5} & 0 & -c_{5} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
&=\left[\begin{array}{rrrrr}
c_{6} & -s_{6} & 0 & 0 \\
s_{6} & c_{6} & 0 & 0 \\
0 & 0 & 1 & d_{6} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& {\left[\begin{array}{rrrr}
r_{11} & r_{12} & r_{13} & d_{x} \\
r_{21} & r_{22} & r_{23} & d_{y} \\
r_{31} & r_{32} & r_{33} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
r_{11} & =c_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]-d_{2}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \\
r_{21} & =s_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]+c_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \\
r_{31} & =-s_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-c_{2} s_{5} c_{6} \\
r_{12} & =c_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]-s_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) \\
r_{22} & =-s_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]+c_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) \\
r_{32} & =s_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+c_{2} s_{5} s_{6} \\
r_{13} & =c_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)-s_{1} s_{4} s_{5} \\
r_{23} & =s_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)+c_{1} s_{4} s_{5} \\
r_{33} & =-s_{2} c_{4} s_{5}+c_{2} c_{5} \\
d_{x} & =c_{1} s_{2} d_{3}-s_{1} d_{2}++d_{6}\left(c_{1} c_{2} c_{4} s_{5}+c_{1} c_{5} s_{2}-s_{1} s_{4} s_{5}\right) \\
d_{y} & =s_{1} s_{2} d_{3}+c_{1} d_{2}+d_{6}\left(c_{1} s_{4} s_{5}+c_{2} c_{4} s_{1} s_{5}+c_{5} s_{1} s_{2}\right) \\
d_{z} & =c_{2} d_{3}+d_{6}\left(c_{2} c_{5}-c_{4} s_{2} s_{5}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & a_{1} c_{1} \\
s_{1} & c_{1} & 0 & a_{1} s_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{2}=\left[\begin{array}{cccc}
c_{2} & s_{2} & 0 & a_{2} c_{2} \\
s_{2} & -c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & 1_{1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{4}=\left[\begin{array}{cccc}
c_{4} & -s_{4} & 0 & 0 \\
s_{4} & c_{4} & 0 & 0 \\
0 & 0 & 1 & d_{4} \\
0 & 0 & 0 & 1
\end{array}\right] \text {. } \\
& T_{4}^{0}=A_{1} \cdots A_{4}= \\
& {\left[\begin{array}{cccc}
c_{12} c_{4}+s_{12} s_{4} & -c_{12} s_{4}+s_{12} c_{4} & 0 & a_{1} c_{1}+a_{2} c_{12} \\
s_{12} c_{4}-c_{12} s_{4} & -s_{12} s_{4}-c_{12} c_{4} & 0 & a_{1} s_{1}+a_{2} s_{12} \\
0 & 0 & -1 & -d_{3}-d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

End of Lec

Inverse Kinematics (IK)

"Given a goal position find the joint angles for the robot arm"

Inverse Kinematics

- The inverse kinematics is needed in the control of manipulators.
- Solving the inverse kinematics is computationally expansive and generally takes a very long time in the real time control of manipulators.
- IK generally harder than FK
- Sometimes no analytical solution
- Sometimes multiple solutions
- Sometimes no solution
- Outside workspace

Inverse kinematics

Analytical Method
 Numerical Method

Joint variables solved according to given configuration data

Joint variables obtained by numerical techniques

Geometric solution

For simple structures,2-DOF

Algebraic solution
For more links and in 3 dimensions

Geometric Solution Approach

Geometric Solution Approach

- It is applied to the simple robot structures, such as, 2-DOF planer manipulator whose joints are both revolute.
- In the shown Figure, the components of point $P\left(p_{x}, p_{y}\right)$ are determined as follows.

$$
\begin{aligned}
& p_{\mathrm{x}}=1_{1} \mathrm{c} \Theta_{1}+1_{2} \mathrm{c} \Theta_{12} \\
& \mathrm{p}_{\mathrm{y}}=1_{1} \mathrm{~s} \Theta_{1}+1_{2} \mathrm{~s} \Theta_{12}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{x}}=1_{1} \mathrm{CO}_{1}+1_{2} \subset \Theta_{12} \\
& \mathrm{P}_{\mathrm{y}}=1_{1} s \Theta_{1}+1_{2} s \Theta_{12}
\end{aligned}
$$

- The solution of θ_{2} can be computed from summation of squaring both previous equations
$\mathrm{p}_{\mathrm{x}}^{2}=\mathrm{l}_{1}^{2} \mathrm{c}^{2} \theta_{1}+\mathrm{l}_{2}^{2} \mathrm{c}^{2} \theta_{12}+2 l_{1} 1_{2} \mathrm{c} \theta_{1} \mathrm{c} \theta_{12}$
$p_{y}^{2}=l_{1}^{2} s^{2} \theta_{1}+l_{2}^{2} s^{2} \theta_{12}+2 l_{1} 1_{2} s \theta_{1} s \theta_{12}$
$\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}=\mathrm{l}_{1}^{2}\left(\mathrm{c}^{2} \theta_{1}+\mathrm{s}^{2} \theta_{1}\right)+\mathrm{l}_{2}^{2}\left(\mathrm{c}^{2} \theta_{12}+\mathrm{s}^{2} \theta_{12}\right)+2 l_{1} l_{2}\left(\mathrm{c} \theta_{1} \mathrm{c} \theta_{12}+\mathrm{s} \theta_{1} \mathrm{~s} \theta_{12}\right)$
- Since $\mathrm{c}^{2} \theta_{1}+\mathrm{s}^{2} \theta_{1}=1$, the equation is simplified as:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}=\mathrm{l}_{1}^{2}+\mathrm{l}_{2}^{2}+2 \mathrm{l}_{1} 1_{2}\left(\mathrm{c} \theta_{1}\left[\mathrm{c} \theta_{1} \mathrm{c} \theta_{2}-\mathrm{s} \theta_{1} \mathrm{~s} \theta_{2}\right]+\mathrm{s} \theta_{[}\left[\mathrm{s} \theta_{1} \mathrm{c} \theta_{2}+\mathrm{c} \theta_{1} \mathrm{~s} \theta_{2}\right]\right) \\
& \mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}=\mathrm{l}_{1}^{2}+\mathrm{l}_{2}^{2}+21_{1} 1_{2}\left(\mathrm{c}^{2} \theta_{1} \mathrm{c} \theta_{2}-\mathrm{c} \theta_{1} \mathrm{~s} \theta_{1} \theta_{2}+\mathrm{s}^{2} \theta_{1} \mathrm{c} \theta_{2}+\mathrm{c} \theta_{1} \mathrm{~s} \theta_{1} \mathrm{~s} \theta_{2}\right) \\
& \mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}=l_{1}^{2}+\mathrm{l}_{2}^{2}+21_{1} 1_{2}\left(\mathrm{c} \theta_{2}\left[\mathrm{c}^{2} \theta_{1}+\mathrm{s}^{2} \theta_{1}\right]\right) \\
& \mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}=l_{1}^{2}+\mathrm{l}_{2}^{2}+21_{1} 1_{2} \mathrm{c} \theta_{2}
\end{aligned}
$$

$$
\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}=\mathrm{l}_{1}^{2}+\mathrm{l}_{2}^{2}+21_{1} 1_{2} \mathrm{c} \theta_{2}
$$

and so

$$
\mathrm{c} \Theta_{2}=\frac{\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}-1_{1}^{2}-1_{2}^{2}}{21_{1} 1_{2}}
$$

Since, $\mathrm{c}^{2} \theta_{\mathrm{i}}+\mathrm{s}^{2} \theta_{\mathrm{i}}=1(i=1,2,3, \ldots \ldots), \mathrm{s} \theta_{2}$ is obtained as

$$
\mathrm{s} \Theta_{2}= \pm \sqrt{1-\left(\frac{\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}-\mathrm{l}_{1}^{2}-\mathrm{l}_{2}^{2}}{2 \mathrm{l}_{1} \mathrm{l}_{2}}\right)^{2}}
$$

Finally, two possible solutions for θ_{2} can be written as

$$
\theta_{2}=A \tan 2\left(\pm \sqrt{1-\left(\frac{p_{x}^{2}+p_{y}^{2}-l_{1}^{2}-l_{2}^{2}}{2 l_{1} 1_{2}}\right)^{2}}, \frac{\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}-\mathrm{l}_{1}^{2}-\mathrm{l}_{2}^{2}}{21_{1} 1_{2}}\right)
$$

$$
\begin{array}{ll}
\mathbf{p}_{\mathrm{x}}=\mathbf{1}_{1} \mathrm{c} \boldsymbol{\Theta}_{1}+\mathbf{1}_{2} \mathbf{c} \boldsymbol{\theta}_{12} & \ldots \ldots . . .1 \\
\mathbf{p}_{y}=\mathbf{1}_{1} \mathbf{s} \boldsymbol{\Theta}_{1}+\mathbf{1}_{2} \mathbf{s} \boldsymbol{\Theta}_{12} & \ldots \ldots . . .2
\end{array}
$$

- The solution of θ_{1} multiply each side of equation 1 by $c \theta_{1}$ and equation 2 by $s \theta_{1}$ and add the resulting equations in order to find the solution of θ_{1} in terms of link parameters and the known variable θ_{2}.

$$
\begin{aligned}
& \mathrm{c} \theta_{1} \mathrm{p}_{\mathrm{x}}=1_{1} \mathrm{c}^{2} \theta_{1}+1_{2} \mathrm{c}^{2} \theta_{1} \mathrm{c} \theta_{2}-1_{2} \mathrm{c} \theta_{1} \mathrm{~s} \theta_{1} \mathrm{~s} \theta_{2} \\
& \mathrm{~s} \Theta_{1} \mathrm{p}_{\mathrm{y}}=1_{1} \mathrm{~s}^{2} \theta_{1}+1_{2} \mathrm{~s}^{2} \theta_{1} \mathrm{c} \theta_{2}+1_{2} \mathrm{~s} \theta_{1} \mathrm{c} \theta_{1} \mathrm{~s} \theta_{2} \\
& \mathrm{c} \Theta_{1} \mathrm{p}_{\mathrm{x}}+\mathrm{s} \Theta_{1} \mathrm{p}_{\mathrm{y}}=1_{1}\left(\mathrm{c}^{2} \theta_{1}+\mathrm{s}^{2} \theta_{1}\right)+1_{2} \mathrm{c} \Theta_{2}\left(\mathrm{c}^{2} \theta_{1}+\mathrm{s}^{2} \theta_{1}\right)
\end{aligned}
$$

The simplified equation obtained as follows.
$\mathrm{c} \theta_{1} \mathrm{p}_{\mathrm{x}}+\mathrm{s} \theta_{1} \mathrm{p}_{\mathrm{y}}=1_{1}+1_{2} \mathrm{c} \theta_{2}$

- Multiply each side of equation 1 by $-s \theta_{1}$ and equation 2 by c_{1} and add the resulting equations

$$
-\mathrm{s} \Theta_{1} p_{\mathrm{x}}=-1_{1} \mathrm{~s} \Theta_{1} \mathrm{c} \Theta_{1}-1_{2} \mathrm{~s} \Theta_{1} \mathrm{c} \Theta_{1} \mathrm{c} \Theta_{2}+1_{2} \mathrm{~s}^{2} \Theta_{1} \mathrm{~s} \Theta_{2}
$$

$$
c \Theta_{1} p_{\mathrm{y}}=1_{1} \mathrm{~s} \Theta_{1} \mathrm{c} \Theta_{1}+1_{2} \mathrm{c} \Theta_{1} \mathrm{~s} \Theta_{1} \mathrm{c} \Theta_{2}+1_{2} \mathrm{c}^{2} \Theta_{1} \mathrm{~s} \Theta_{2}
$$

$$
-s \Theta_{1} p_{x}+c \Theta_{1} p_{y}=1_{2} s \Theta_{2}\left(c^{2} \Theta_{1}+s^{2} \Theta_{1}\right)
$$

The simplified equation is given by

$$
-s \Theta_{1} p_{x}+c \Theta_{1} p_{y}=1_{2} s \Theta_{2}
$$

Now, multiply each side of equation 3 by p_{x} and equation 4 by p_{y} and add the resulting equations in order to obtain $\mathrm{c} \theta_{1}$.

$$
\begin{align*}
& P_{x}=1_{1} \mathrm{CO}_{1}+1_{2} \subset \theta_{12} \\
& 1 \\
& p_{y}=1_{1} s \Theta_{1}+1_{2} s \Theta_{12} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& c \theta_{1} p_{x}^{2}+s \theta_{1} p_{x} p_{y}=p_{x}\left(l_{1}+1_{2} c \theta_{2}\right) \\
& -s \theta_{1} p_{x} p_{y}+c \theta_{1} p_{y}^{2}=p_{y} 1_{2} s \theta_{2} \\
& c \theta_{1}\left(p_{x}^{2}+p_{y}^{2}\right)=p_{x}\left(l_{1}+1_{2} c \theta_{2}\right)+p_{y} 1_{2} s \theta_{2}
\end{aligned}
$$

and so

$$
\mathrm{c} \theta_{1}=\frac{\mathrm{p}_{\mathrm{x}}\left(\mathrm{l}_{1}+\mathrm{l}_{2} \mathrm{c} \theta_{2}\right)+\mathrm{p}_{\mathrm{y}} \mathrm{l}_{2} \mathrm{~s} \theta_{2}}{\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}}
$$

$$
\mathrm{c} \theta_{1}=\frac{\mathrm{p}_{\mathrm{x}}\left(\mathrm{l}_{1}+\mathrm{l}_{2} \mathrm{c} \theta_{2}\right)+\mathrm{p}_{\mathrm{y}} \mathrm{l}_{2} \mathrm{~s} \theta_{2}}{\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}}
$$

$s \theta_{1}$ is obtained as

$$
\mathrm{s} \theta_{1}= \pm \sqrt{1-\left(\frac{\mathrm{p}_{\mathrm{x}}\left(\mathrm{l}_{1}+\mathrm{l}_{2} \mathrm{c} \theta_{2}\right)+\mathrm{p}_{\mathrm{y}} \mathrm{l}_{2} \mathrm{~s} \theta_{2}}{\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}}\right)^{2}}
$$

As a result, two possible solutions for θ_{1} can be written

$$
\theta_{1}=A \tan 2\left(\pm \sqrt{1-\left(\frac{p_{x}\left(l_{1}+l_{2} c \theta_{2}\right)+p_{y} l_{2}{ }_{2} \theta_{2}}{p_{x}^{2}+p_{y}^{2}}\right)^{2}}, \frac{p_{x}\left(l_{1}+l_{2} c \theta_{2}\right)+p_{y} l_{2} \mathrm{~s} \theta_{2}}{p_{x}^{2}+p_{y}^{2}}\right.
$$

Although the planar manipulator has a very simple structure, as can be seen, its inverse kinematics solution based on geometric approach is very difficult.

Algebraic Solution Approach

End of Lec

