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» Cascade

> State transition matrix and its properties
> Eigen values and Eigen Vectors
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State Space Definition

e Steps of control system design
— Modeling: Equation of motion of the system
— Analysis: test system behavior

— Design: design a controller to achieve the required
specification

— Implementation: Build the designed controller
— Validation and tuning: test the overall sysetm

 InSS :Modeling, analysis and design in time
domain



SS-Definition

In the classical control theory, the system model is
represented by a transfer function

The analysis and control tool is based on classical methods
such as root locus and Bode plot

It is restricted to single input/single output system

It depends only the information of input and output and it
does not use any knowledge of the interior structure of the
plant,

It allows only limited control of the closed-loop behavior using
feedback control is used



* Modern control theory solves many of the
limitations by using a much “richer” description
of the plant dynamics.

 The so-called state-space description provide the
dynamics as a set of coupled first-order
differential equations in a set of internal variables
known as state variables, together with a set of
algebraic equations that combine the state
variables into physical output variables.



SS-Definition

The Philosophy of SS based on transforming the equation of
motions of order n (highest derivative order) into an n
equation of 1%t order

State variable represents storage element in the system which
leads to derivative equation between its input and output; it
could be a physical or mathematical variables

# of state=#of storage elements=order of the system
For example if a system is represented by

A3y A2y s du
S T ) 19 | 18y — 135 | 98
a2 * Vag ! dt =Y gy e

This system of order 3 then it has 3 state and 3 storage
elements



SS-Definition

 The concept of the state of a dynamic system refers to a
minimum set of variables, known as state variables, that fully
describe the system and its response to any given set of
inputs

Input vector u Output vector y

U;(f) l’ System L yf(t‘]
I > descibed by state variables | . >
u,(t) —“ {X1.Xp , ... X } —1\) Yoo (0

The state variables are an internal description of the system

which completely characterize the system state at any time t, and
from which any output variables yi(t) may be computed.



The State Equations

A standard form for the state equations is used throughout system dynamics. In the
standard form the mathematical description of the system is expressed as a set of n
coupled first-order ordinary differential equations, known as the state equations,

in which the time derivative of each state variable is expressed in terms of the state
variables x1(t), . . ., xn(t) and the system inputs ul(t), . . ., ur(t).

i = i lxadt)

r9 = fo(x.,u.t)

T = Tilxa,i)



It is common to express the state equations in a vector form, in which the set of n
state variables is written as a state vector x(t) = [x,(t), x,(t), . . ., x,(t)]", and the set of r
inputs is written as an input vector u(t) = [u,(t), u,(t), . .., u(t)]” . Each state variable is
a time varying component of the column vector x(t).

x—F (% ui).

where f (x.u,t) 1s a vector function with n components f; (x,u.1).

In this note we restrict attention primarily to a description of systems that are linear and
time-invariant (LT1), that is systems described by linear differential equations with constant
coefficients.
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where the coefficients a;and b; are constants that describe the system. This set of n
equations defines the derivatives of the state variables to be a weighted sum of the
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x = Ax + Bu

where the state vector x is a column vector of length n, the input vector uis a
column vector of length r, A is an n x n square matrix of the constant coefficients
a;, and B is an n x r matrix of the coefficients b;that weight the inputs.

A system output is defined to be any system variable of interest. A description of a
physical system in terms of a set of state variables does not necessarily include all of
the variables of direct engineering interest.

An important property of the linear state equation description is that all system
variables may be represented by a linear combination of the state variables
xi and the system inputs ui.



An arbitrary output variable in a system of order n with r inputs may be written:
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y(t) = ciry + coxo + ...+ cpzp +diuy + ...+ dyu,
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where y is a column vector of the output variables y/(t), Cis an mxn matrix of the
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constant coefficients c; that weight the state variables, and D is an m x r matrix of the
constant coefficients d;; that weight the system inputs. For many physical systems the

matrix D is the null matrix, and the output equation reduces to a simple weighted

combination of the state variables:

VY

vy = Cx.




Example

Find the State equations for the series R-L-C electric circuit shown in

O

R
AVAV

V() L

Solution:
capacitor voltage v (t) and the inductor current i, (t) are state variables

] [ 0 1/C 1w 0 1y
i | 7| =i —mps | | 5 |V uE |

y(t)=[10:[;j§]+[o:1iﬂ



Prove
Appling KVL on the circuit

V(1)) =R*I+V +L— (D

The relation of capacitor voltage and current j C%

then dt
Xl_ dV :1| :1)(2
d c
fromequation (1)
di .
XZ_E -v.—R*1 +V (1)
1
X, =% = R*x +u(D)]



Example
Draw a direct form realization of a block diagram, and write the
state equations in phase variable form, for a system with the

differential equation
Py &y | dy du

773 -+ s + lDE + 13y = ME + 26u
Solution X, =y, % =y,and x, = y+13u,
we define state variables as
then the state space representation is
X=Y=X
X =y=x%-1
X,=y-130=-/y-19y-13y + 26u
=—=7(x,—13u) —-19x, —13x + 26u
=—7/x,—19x, -13x +117u

y=2X




Then the model will be

0 1 O

xt)=l 0 0 1

-13 -19 -7

y(t)=[1 0 ox(t)+[0
where

"0 1 0]

A=l 0 0 1]

-13 -19 -7

C=[1 0 0, D=

X(t) +

u(t)

0

-13
117

u(t)



Electro Mechanical System
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Vo= Kyx, = Rox,+ L x,



B+f [ Vs>

K, |«

(b)

'1?1 0 1 0 x 0 - X
{"?2]:{0 ~fIF Kpld ||z |+| 0 v el SR {x%
X3 | |0 -K,/L, -R,/L,||x3| |VL, X3



State Space Representation

The complete system model for a linear time-invariant system consists of:

(i) a set of n state equations, defined in terms of the matrices A and B, and
(ii) a set of output equations that relate any output variables of interest to the state
variables and inputs, and expressed in terms of the C and D matrices.

The task of modeling the system is to derive the elements of the matrices, and to write
the system model in the form:
x = Ax+ Bu
y = Cx+ Du.
The matrices A and B are properties of the system and are determined by the

system structure and elements. The output equation matrices C and D are
determined by the particular choice of output variables.



Block Diagram Representation of Linear Systems
Described by State Equations

Step 1: Draw n integrator (S—-1) blocks, and assign a state variable to the output of each
block.

Step 2: At the input to each block (which represents the derivative of its state variable)
draw a summing element.

Step 3: Use the state equations to connect the state variables and inputs to the
summing elements through scaling operator blocks.

Step 4: Expand the output equations and sum the state variables and inputs through a
set of scaling operators to form the components of the output.

a0 B T st e O e




Example 1

Draw a block diagram for the general second-order, single-input single-output

i system:
Tq a1y 19 T1 by
. = + u(t)
L9 91 A9 Lo bg
_ : T
y(t) = c1 C9 } il 7 du(t).
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The overall modeling procedure developed in this chapter is based on the following
steps:

1. Determination of the system order n and selection of a set of state variables
from the linear graph system representation.

2. Generation of a set of state equations and the system A and B matrices using a
well defined methodology. This step is also based on the linear graph system
description.

3. Determination of a suitable set of output equations and derivation of the
appropriate C and D matrices.



Consider the following RLC circuit

l
u(r) N ’ +
Current (‘D U T~ C R & v,
source - _
I i
We can choose state variables to be X, =V, (1), X, =i, (t),
Alternatively, we may choose X, = V. (1), X, = v (1).

This will yield two different sets of state space equations, but
both of them have the identical input-output relationship,
expressed by Vo(s) _ R

Can you derive this TF? U(s) LCs’+RCs+1




Linking state space representation and
transfer function

¢ Given a transfer function, there exist infinitely many input-
output equivalent state space models.

** We are interested in special formats of state space
representation, known as canonical forms.

* It is useful to develop a graphical model that relates the state
space representation to the corresponding transfer function.
The graphical model can be constructed in the form of signal-
flow graph or block diagram.



We recall Mason’s gain formula when all feedback loops are
touching and also touch all forward paths,

RA R
2RO 2R _ Sumof forwardpathgain

T - _k — k = — .
A 1—Z|—q 1-sumof feedbackoopgain
q=1
Consider a 4t"order TF G(s) = Y(s) = b,
U(s) s*+as’+a,s®+as+a,
b,s™

l+ast+as’+asitas’
We notice the similarity between this TF and Mason’s gain formula
above. To represent the system, we use 4 state variables Why?



Signal-flow graph model

This 4th-order system G(S):Y(S)= — bof’ R
U(s) 1+as +as +as”+a,;s

can be represented by

How do you verify this signal-flow graph by Mason’s
gain formula?



Block diagram model

Y
G(S):U(S) = n 3 b02
() s +as +as +asta

_ b,s™
l+as +as’+as +a,s*

Again, this 4t"-order TF

can be represented by the block diagram as shown

=]
=1

aj -

ap [




With either the signal-flow graph or block diagram of
the previous 4t"-order system,

_(1'{}

we define state variables as X, = %0 Xy = Xy X3 = Xy, Xy = Xg,

then the state space representation is

% =X,
X, = X,
X3 = X,
X, = 78X —aX, —a,X; X, +U
y =X,



Writing in matrix form

X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

we have

dQ)OOO
,_Q)OOH
I\?_;CDI—‘C)
o?_,l—‘OO

I
o

c=[, 0 0 0, D



When studying an actual control system block diagram, we wish to
select the physical variables as state variables. For example, the block
diagram of an open loop DC motor is

Motor and load

Controller
Field Field . .
volt urrent Velocity
5(s + 1) oltage curre _
R (5 e— GE,{,';'}: 8 _I_' P ] S - - 0 " » Y(5)
(s +3) U(s) (s + 2 I(s) (s + 3)
Vo B \
5 + 55 S 65 1
_ -1 _
1+5Sl 1+2s 1+3s™
5
1 1 1
I 3 ) L{n ? Il[s} T .

We draw the signal-flow diagraph of each block separately

and then connect them. We selegcty(?), x,=/(t) and
x~1/4)r(t)(1/20)u(t)to form the state space representation.



Physical state variable model

The corresponding state space equation is

X =

(-3

0
0

6 0
-2 -20
0 -5|

yzil 0 O]x

X+

0
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_1_

r(t)



Electro Mechanical System
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Vo= Kyx, = Rox,+ L x,



B+f [ Vs>

K, |«

(b)

'1?1 0 1 0 x 0 - X
{"?2]:{0 ~fIF Kpld ||z |+| 0 v el SR {x%
X3 | |0 -K,/L, -R,/L,||x3| |VL, X3
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Control Flow

Reservoir
~ Optical
encoder
T \1 Valve
2T
l g
T Flowmeter
h
v =
2.




ko =25, k, =1, k, = 0.005

k, =5J=005R,=10

q; = k.6, k, =8, tank area A = 50 m?
go=kyh, ky = 225, k= 0.25.

Reservoir
' Optical
| \ encnder
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State-Space Representations in Canonical Forms.

1- Controllable Canonical Form

Y(s) bys" + bls”_l Fe g B8 B
Uls) s+ a4+ -+ a, s+ a

H

() (n—1) (a) (n—1)

y 23 iy Y S ﬂ.l'l'—-l.'-i:r T d,y = bf_'l' u -+ E}l i e bﬂ—t“ i E}HH
Special Case
Y(s) _ b
T = Te) ~ " +ars™  #omnnnt Qpas +



Assume
x1 =y
Xo= Yy

n

0 i |

0 0

0 0
ez a, —Qap
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X, =—Q X, —Q Xy oo — A%, +bU
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Integrating blocks




General Case

u b053+b,sz+bzs+b3 y

3 2
s + a5 +323+aa

X1 (S] _ 1 \ /_\

Y(s)
I Tl el i

bos + byS” + bys + by

3 2
S +85 +as5+a,

y=0byx, + b %, + EJI:-':1 + be‘:vr:1

=by(~azx, - T2 —a%3 +u) + byx, + byxy + bax,

= —_ K
0

X3






Controllable Canonical Form General case

Y(s) bgs" + bys" ' + -+ b,y5 + b,

Ul(s) s"+as" '+ +a, s+ a,
x| oo 1 0o - 0 | x, | [o0]
X 0 0 1 0 Xa 0
— _|_ i
X, 1 0 0 0 1 X1 0
| ':.fri | .__ﬂn _ﬂn—l _Hu—E _HI_ | xn _ _1_
_Il_
X2
y = by — ayby | byy — ay1bg | -+ i by — aib] | T bou
Y _"rJ'I_




2- Observable Canonical Form

Y(S} d b{]S” N 7] 515”_] ¥ s 3 bﬁ_lS + bn

Prove U(is)y s"+as"'+-+a,_;5s+a,
n dn—l dn—2 _ dn dn -1 dn—2
el Al Srres Al prve) S tay= dt” +h = dt”‘2u+ ..... +bu
rearrange | ¢ g o
y=b (bu-ay)+ (bu-a,y)+....+(bu-ay)

dt" °dt” dt“‘1 dt"?

Integrate both side n times

y=bu+[(bu-ay)dt+[[(bu-ay)dt+

¢A




General Form

Y(s) bys"+bs" ++ b5+ b,

2w [o

X 1

X, 0
y = [[]

"+ a4+ -+ a

0 —a,
0 —a,
L —a
X1
X
0 1]
"r.!r—l
L '[.H-

n—1

X1
X2
_|_
xﬁ -
+ byu
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bn—l o Ill:In.—lbl]

by — a, b




3- Diagonal Canonical Form

Y(s)  bys" +bs"t+-+b,_5+Db,
Ul(s) (s + pi)(s + po)--(s + Pn)
CI Cj Eu
= b[]' _ — + e + —
stp St P ST Pu
(%] [A; O g w0 IR :
ty | |0 Az 0 0 1]% + '1u Q_’(%
.\‘:’n ._U 0 0 ;ln——xn" 1_ E -
xq | Y e—-
Xp |
—» b,




General Form
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—Pn_|

+ byu




4- cascade Form

Controller Motor and load
Field Field . .
voltage urrent Velocity
5(s + 1) ‘oltage 1 curre 6 _
R(5) — {’_',‘E,{,-;'}: s > P > 3 » Y(5)
(s J) U(s) (5 Z) I(s) (5 3)
R(s :_j ¥ix)




. | F
i > - J \-_.-"’I N5l
\4){-' 6 vl

. :_'; ~ H’s] N + | .
W, - . ‘J 5 ; -.2, — Jrm| ? T Yis)
3 ] | 3

The corresponding state space equation is
-3 6 0] [0
X=| 0 -2 -20[x+|5]|r(t)
0 0 -5| |1
y=[1 0 O]x




Examples
1- Consider the system given by
Y(s) g+ 3
U(s) - s* + 35 +

2

Obtain state-space representations in the controllable canonical form,
observable canonical form, and diagonal canonical form.

Controllable Canonical Form:
)| [0 1 xm(r) |, [0
Et;(r}} 2 —3}[@(;}} ' [1]“(”
_~ 3 x1(1)
0 =3 030




Examples B e

Observable Canonical Form:
[.i-](r)} B [[] —2][1,@)] . F}
H) | 1 =3 || % 1
e\ x1(1)
y(e) =10 1]|:Iz(fj‘}
Diagonal Canonical Form:
2Ol [—1 ol @ 1
L-ztr)] “Lo —J[rﬂr}] ! [1]”“}
W xy(1)
y(r) = |2 l][ﬁ“}]




Examples

Y(s) 10s + 10
U(s) s +65°+ 55+ 10

X1 0 1 0 X1
Xa — 0 0 1 X2 +
| X3 | __10 —5 _6_ | X3 | |
_xl_

U



oV

Examples

Y(s) 25.04s + 5.008
U(s) s+ 503255 + 25.1026s + 5.008
0 1 0 X,
| 0 0 1 X
~5008 —25.1026 —5.03247 || x3

i



Eigenvalues of an n X n Matrix A.

The eigenvalues are also called the characteristic roots. Consider, for example,
the following matrix A:

0 1 0

A= 0 0 1
6 —11 —6_

A —1 0

E—%kf =00 % =4

The eigenvalues of A are
the roots of the

i . characteristic equation,
= A° +6A° + 11A + 6 or—1,-2, and -3.

6 11 AFH

= (A +1)(A+2(A+3)=0



o9

Jordan canonical form

If a system has a multiple poles, the state space
representation can be written in a block diagonal form,
known as Jordan canonical form. For example,

X ;10 {0 0 X 0
X 0 -p, 1 i : X, 0
%3 B W % 5. A 0 || * 1
Xy - 0 . 0 —Pa 0 X4 4 ]. N
5, ] Lo - 0o ] L1
e
X2
y=leg ¢ = ¢ + byu
_xn_




State-Space and Transfer Function

The SS form
x = Ax+ Bu
y = C(Cx+4 Du.

Can be transformed into transfer function

Tanking the Laplace transform and neglect initial condition then

sX(s) —x(0) = AX(s) + BU(s) anc (1)
Y (s)=C X(s)+ DU(s) (2)
then

sX(s) — AX(s) =x(0) + BU(s)



sX(s) — AX(s) =x(0) + BU(s)

by neglectingntial conditionthen

(sl — A)X(s)=BU(s)

X(s) = (sl = A)*BU(s)

subin 2

Y(s)=C(sl — AJ*BU(s) + DU(s)
Y(s)/U(s)=G(s)=C(sl —A)"B+D



State-Transition Matrix

We can write the solution of the homogeneous state equation
X(t) = Ax(1) Laplace transform S X(s) — x(0) = AX(s)

(s — A)X(s) = x(0) ‘ X(s) = (sI — A) x(0)

The inverse Laplace transform x(1) = 'f{"L[(SI - A}"]xiﬂ}

2
Note that (sI — A}—] . 1 L “\: n ‘*: W
) 5° 5
| At A’
f -[[{'51 s A}_]] — 1 + At + 2, S 3{ G e t;...if



Hence, the inverse Laplace transform of (s — A)!

gic - AR A3 |
(sl =AY =1+ At + 5 + e = M

x(t) = e™x(0)

State-Transition Matrix x(t) = P(r)x(0)

where (#) 1s an n X n matnx and 1s the unique solution of

lb{r} = Afb[:r), fb(ﬂ] = |
Where

D(t) = e = (s — A)'] Notethat dl(t) = ¢ M

d(—t)



If the eigenvalues Aj, Az, ..., A, of the matrix A are distincdm{;}\

will contain the n exponentials

g™l g2t p'n




£ e, - b =

Properties of State-Transition Matrices.

B0y = =1
LB(1) = eM = (e M) = [®( )] ord (1) = B 1)

. *17'{."1 T rz) = E,.-\I:h" h) = E':UIE:HI = q]{.f-lj{h(lel — {b{:h)d}{ft)

[ @()]" = D(nr)
Dt — 1) D(t; — 1) = Pty — 15) = D1, — 1) P(1

— 1)



Obtain the state-transition matrit(f) of the following system:

HEEN N

A = [_U _;] () = A= P (T~ A)]

2



1y

1
{S+]}(s+2}[

s+ 3

(3 ks +2)
—

(s + 1)(s + 2)

5

(& =1){s+2)

(s+1)(s+2)
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i 1] Al
(1) = et = L7 (s1 - A)7]

|
Frn

drifr) =X =

EE—E . E—E.! —
o P I 2 ;
gy R

EE'I N
e [
£ —EZJI

| —2¢' + 2" —¢' + 26"



or

the NON- homogeneous state equation

x=Ax+ By ol (1) - Ax() = Bu(s)

and premultiplying both sides of this equation by ¢

e Mx(t) — Ax(1)] = %[E_MI{F}] = ¢ MBu(r)

Integrating the preceding equation between 0 and t gives
i
e 2x(t) — x(0) = / e MBu(7)dr
0

x(t) = e™x(0) + /”E’“""-:'BH(T)dT
0



x(t) = d(t)x(0) + ltfh(r — 7)Bu(7)dr

BIRE BN
X3 -2 3 X2 1 unit-step function

u(t) = 1(r)

I ZE—{I—T} . E—E[!—r] {,—-{I—'.r] . E-lfr—r} 0 _
ﬂ.” E memj T £|:_EE 7l 402 1) —p 3} g2 [ “:ld'r



i ZE_U_Ti . E—El:t—.':l E,.—{.I'—'.r] . E—El:f—r} 0 :
o kb
X(1) = e"x(0) + l [—E A7) L9 U T o920 || g [1]dr
xi(f) | | "= = || x(0) ! s—e' 3¢
xy(f) e+ 27 -+ 2e¥ || x,(0) et —e™
[f the initial state is zero, or x{0) = 0, then x(f) can be simplified to

[»ﬁ(f} _ |5 g FgET
xa2(1) A L

\A



0
X9 0 0 1 Xy | + 10
_..3::3_ ___l'[]' _5 _6_ _.I'q_ i 10 ]
_..r.]_
y=1[1 0 0] xo [ +[0]u
| 264,
Prove Transfer function of the given ss
Y(s) 10s + 10
U(s) s*+6s>+5s+10
Solution

G(s)=C(sl —A"'B+D

Yy




Relation of Different SS Representations of the
Same System

For a given system G(s) has two different ss representations

Rep.I M, :x(t) = Ax(t) + Bu(t)
y(t) =Cx(t) + Du(t)
Rep.2 M, 1 x(t) = Az(t) + Bu(t)
y(t) =C,z(t) + D,u(t)

Let Z=T x
Where T is the transformation matrix between x and z
For example take

)(1 =






Sub. By z=Tx in rep. 2

2(t) =Tx(t) = ATx(t) + Bu(t) mutiplyby T+
T72(t) =T7Tx(t) =TTATX(t) + T"B,u(t)
y(t) = C,Tx(t) + D,u(t)

Compare with M1;rep.1 Rep.l M1 : X(t) = AX('[) t Blu(t)
y(t) =Cx(t) + Du(t)

then A =T AT A, =TA T
B, =T B, B, = TB,
C,=C,T C,=CT"
D, =D D,=D,



State-Space Diagonalization Function

Eign values and eign vectors
Definition: for a given matrix A, if ther exist a real (complex)
A and a corresponding vector v#£0, such that

AV = Av
Then A is called eign value and v is the eign vector

e (A= AV =0

And since v#0
Then
(A=A1)=0
det(A—Al)=0

i.e



Eigenvalues of an n X n Matrix A.

The eigenvalues are also called the characteristic roots. Consider, for example,

the following matrix A:

A:

AL — A| = |0

0
0

. —6
A

6

1
0
—11

11

A+ 6

= 463 + 11X 16

= (A +1)(A+2(A+3)=0

A%

The eigenvalues of A are
the roots of the
characteristic equation,
or-1,-2, and -3.



Example
O 1
A=
s

then theeign values thesolutionof |AI - A| =0

Aol
A=A (12

A +21-8=0=(N1+4)(1-2)
then
A=-4 and A, =2



Eign vectors are obtained as

atd=-4

(Al-A)v, =0

l.e

-4 -1|v, 0
-8 —-2|v,

1 v._,=-4v

11

NS

Eign vector matrix

atA, =2
(A1-A)v, =0
|.e
M
=0
-8 4|V,

v, =2y,

-

V :[Vl V2Vn]



For all eign values and vectors

Av. =Av; 1=01...,n

These equations can be written in matrix form

AV = VA
where \ = -Vl V2 "Vn]
A0 0
0 A 0
A=| .
0 0 A
thus -
A=VAV™

=diag{A,i=12,-



thus . ,t?
e =¢t) =1 +At+A§+...

e” =Vve'Vv™
2
et =gt) =1 + At +/\2%+...

(S
et
et = , =diag(e™,i =12,...,n)
e/]nt
Then for a given system has a system matrix A and a state vector X
The di | t trix Ad and state Xd — — -
e diagonal system matrix Ad and state A, = A =T ‘AT
X =Tx,; X, =T 'x

T =V = egn vector
A, =V TAV
B, =V 'B,
c,=C.T
D

matrix



Example 2: find the transformation into diagonal form and the state transition matrix of examplel
-4 0
N\ =
0O 2

At e_4t O
e =
O eZt

e” =Vve'Vv™
o[ 1 1fe" o1 17"
-4 2]l 0 e |-4 2
ol 1 1fe* 072 -
6/-4 2| 0 €4 1

Discus how to obtain the transformation matrix between two representation



Diagonal Canonical Form
bos™ + b;s" '+ .-+ b .5+ b,

AY

(s + pi)(s + po) (s + p,)

C Co
» 2
ST P ST P
0"
—Pn_|
Xy
Xo
L‘”] + byt

n _J

Xn




Alternative Form of the Condition for Complete State Controllability.

where x = state vector (n-vector)

u = control vector (r-vector)

A = n X nmatrix

B = n X r matrix

Xx = Ax + Bu

If the eigenvectors of A are distinct, then it is possible to find a transformation matrix

PIAP =D =

n_

P such that



